Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chi Lê Thị Phương
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 16:29

\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(A_{min}=3\) khi \(x=-2\)

\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

\(B_{min}=1\) khi \(x=10\)

\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)

33. Nguyễn Minh Ngọc
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
22 tháng 10 2020 lúc 21:27

a) x2 - 6x + 11 = ( x2 - 6x + 9 ) + 2 = ( x - 3 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = 3

=> GTNN của bthuc = 2 <=> x = 3

b) x2 - 20x + 101 = ( x2 - 20x + 100 ) + 1 = ( x - 10 )2 + 1 ≥ 1 ∀ x

Dấu "=" xảy ra khi x = 10

=> GTNN của bthuc = 1 <=> x = 10

c) x2 - 4xy + 5y2 + 10x - 22y + 28

= ( x2 - 4xy + 4y2 + 10x - 20y + 25 ) + ( y2 - 2y + 1 ) + 2

= [ ( x2 - 4xy + 4y2 ) + ( 10x - 20y ) + 25 ] + ( y - 1 )2 + 2

= [ ( x - 2y )2 + 2( x - 2y ).5 + 52 ] + ( y - 1 )2 + 2

= ( x - 2y + 5 )2 + ( y - 1 )2 + 2 ≥ 2 ∀ x, y

Dấu "=" xảy ra khi x = -3 ; y = 1

=> GTNN của bthuc = 2 <=> x = -3 ; y = 1

Khách vãng lai đã xóa
Phước Lộc
22 tháng 10 2020 lúc 21:28

a) \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\)

ta có: \(\left(x-3\right)^2\ge0\forall x\)=> \(\left(x-3\right)^2+2\ge2\)

dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

Vậy biểu thức đạt GTNN là 2 khi chỉ khi x = 3

Khách vãng lai đã xóa
Lưu Thị Bằng
22 tháng 10 2020 lúc 21:31

       \(a,x^2-6x+11=x^2-2.x.3+9+2=\left(x-3\right)^2+2\)

Mà \(\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x-3\right)^2+2\ge2\)

       \(\Rightarrow GTNN\)của \(x^2-6x+11\) là \(2\)

Dấu "=" khi và chỉ khi x=3

Khách vãng lai đã xóa
nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 6 2022 lúc 12:56

b: \(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Dấu '=' xảy ra khi x=0 hoặc x=-5

a: \(A=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

Nguyen Thuy Dung
Xem chi tiết
Lê Thị Ngọc Minh
27 tháng 11 2017 lúc 11:48

Ta có 

A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2

=>MIN A=2 khi và chỉ khi x-3=0 hay x=3

B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1

=>MIN B=1 khi và chỉ khi x-10=0 hay x=10

Nguyen Thuy Dung
27 tháng 11 2017 lúc 12:01

làm nốt hộ mình con C đi

Lê Thị Ngọc Minh
27 tháng 11 2017 lúc 12:40

Ta lại có

C=x2-4xy+5y2+10x-22y+28=(x2+(-2y)2-2x2xy+2x5xx-2x5x2y+52)+(y2_2y+12)+2

  =(x-2y+5)2+(y-1)2+2>=2

=>MIN C=2 khi và chỉ khi x-2y+5=0 và y-1=0 hay x=-3 và y=1

Lâm Hữu
Xem chi tiết
»βέ•Ҫɦαηɦ«
28 tháng 7 2017 lúc 15:06

a) Ta có : x2 - 20x + 101 

= x2 - 20x + 100 + 1

= (x - 10)+ 1

Mà (x - 10)2 lớn hơn hoặc bằng 0 

Nên  (x - 10)+ 1 lớn hơn hoặc bằng 1

=> GTNN của biểu thức là 1 . khi x = 10

Nguyễn Thái Sơn
29 tháng 8 2020 lúc 13:23

b) 4a2+4a+2

=(2a)2+2.2a+1+1

=(2a+1)2+1

Vì (2a+1)2  \(\ge\)0 với mọi x \(\in\)R

=>(2a+1)2+1\(\ge\)1 với mọi x \(\in\)R

dấu "=" xảy ra <=> 2a+1=0  <=> 2a=-1 <=> a= -1/2

Khách vãng lai đã xóa
Nguyễn Thái Sơn
29 tháng 8 2020 lúc 13:28

câu c bạn tham khảo tại link sau nhé ! 

https://h oc 24.vn/hoi-dap/question/394806.html

Khách vãng lai đã xóa
Nguyễn N
Xem chi tiết
Phùng Minh Quân
30 tháng 6 2018 lúc 17:02

\(A=x^2-6x+11\)

\(A=\left(x^2-6x+9\right)+2\)

\(A=\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTNN của \(A\) là \(2\) khi \(x=3\)

\(B=x^2-20x+101\)

\(B=\left(x^2-20x+100\right)+1\)

\(B=\left(x-10\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)

\(\Leftrightarrow\)\(x-10=0\)

\(\Leftrightarrow\)\(x=10\)

Vậy GTNN của \(B\) là \(1\) khi \(x=10\)

Chúc bạn học tốt ~ 

_Guiltykamikk_
30 tháng 6 2018 lúc 17:09

\(A=x^2-6x+11\)

\(A=\left(x^2-6x+9\right)+2\)

\(A=\left(x-3\right)^2+2\)

Mà  \(\left(x-3\right)^2\ge0\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :  \(x-3=0\Leftrightarrow x=3\)

Vậy  \(A_{Min}=2\Leftrightarrow x=3\)

b) \(B=x^2-20x+101\)

\(B=\left(x^2-20x+100\right)+1\)

\(B=\left(x-10\right)^2+1\)

Mà  \(\left(x-10\right)^2\ge0\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :  \(x-10=0\Leftrightarrow x=10\)

Vậy  \(B_{Min}=1\Leftrightarrow x=10\)

c)  \(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x-2y+5\right)^2\ge0\)

      \(\left(y-1\right)^2\ge0\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vây  \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

_Guiltykamikk_
30 tháng 6 2018 lúc 17:13

\(D=4x-x^2+3\)

\(-D=x^2-4x-3\)

\(-D=\left(x^2-4x+4\right)-7\)

\(-D=\left(x-2\right)^2-7\)

Mà  \(\left(x-2\right)^2\ge0\)

\(\Rightarrow-D\ge-7\)

\(\Leftrightarrow D\le7\)

Dấu "=" xảy ra khi :  \(x-2=0\Leftrightarrow x=2\)

Vậy  \(D_{Max}=7\Leftrightarrow x=2\)

\(E=-x^2+6x-11\)

\(-E=x^2-6x+11\)

\(-E=\left(x^2-6x+9\right)+2\)

\(-E=\left(x-3\right)^2+2\)

Mà  \(\left(x-3\right)^2\ge0\)

\(\Rightarrow-E\ge2\)

\(\Leftrightarrow E\le-2\)

Dấu "=" xảy ra khi  \(x-3=0\Leftrightarrow x=3\)

Vậy  \(E_{Max}=-2\Leftrightarrow x=3\)

Hi HI Hi
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 22:22

\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)

Lấp La Lấp Lánh
22 tháng 12 2021 lúc 22:23

a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

\(minA=2\Leftrightarrow x=3\)

b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)

\(minB=51\Leftrightarrow x=5\)

c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Phạm Hà Linh
Xem chi tiết
Phan Nghĩa
27 tháng 8 2020 lúc 17:19

Bài 1

a) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x-1\right)\left(x+1\right)\)

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)

\(=3x^3+6x-3x^3+3x=9x\)

b) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2bc-2ca+4a^2-4ab+b^2\)

\(=6a^2+3b^2+2c^2+4ab-4ab=6a^2+3b^2+2c^2\)

Bài 2 

a) \(x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

Dấu = xảy ra \(< =>\left(x-10\right)^2=0< =>x-10=0< =>x=10\)

b) \(4a^2+4a+2=4\left(a^2+a+\frac{1}{4}\right)+1=4\left(a+\frac{1}{2}\right)^2+1\ge1\)

Dấu = xảy ra \(< =>4\left(a+\frac{1}{2}\right)^2=0< =>a+\frac{1}{2}=0< =>a=-\frac{1}{2}\)

c) \(x^2-4xy+5y^2+10x-22y+28=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+y^2-2y+1+27\)

\(=\left(x-2y\right)^2+2.5.\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu = xảy ra \(< =>\hept{\begin{cases}y-1=0\\x-2y+5=0\end{cases}< =>\hept{\begin{cases}y=1\\x=-3\end{cases}}}\)

Bài 3 

a) \(4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Dấu = xảy ra \(< =>\left(x-2\right)^2=0< =>x-2=0< =>x=2\)

b) \(x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu = xảy ra \(< =>\left(x-\frac{1}{2}\right)^2=0< =>x-\frac{1}{2}=0< =>x=\frac{1}{2}\)

Khách vãng lai đã xóa
lê nhật duẫn
Xem chi tiết
Kakarot Songoku
26 tháng 3 2020 lúc 14:31

a) A = x2 - 6x + 11

A = (x2 - 6x + 9) + 2

A = (x - 3)2 + 2

Vì (x - 3)2 ≥ 0

Nên A = (x - 3)2 + 2 ≥ 2 (dấu bằng xảy ra khi x = 3)

Vậy Min A = 2 tại x = 3

b) B = x2 - 20x + 101

B = (x2 - 20x + 100) + 1

B = (x - 10)2 + 1

Vì (x - 10)2 ≥ 0

Nên B = (x - 10)2 + 1 ≥ 1 (dấu bằng xảy ra khi x = 10)

Vậy Min B = 1 tại x = 10

c) C = x2 - 4xy + 5y2 + 10x - 22y + 28

C = (x2 + 4y2 + 25 + 10x - 4xy - 20y) + (y2 - 2y + 1) + 2

C = (x - y + 5)2 + (y - 1)2 + 2

Vì (x - y + 5)2 ≥ 0

Và (y - 1)2 ≥ 0

Do đó (x - y + 5)2 + (y - 1)2 ≥ 0

Nên C = (x - y + 5)2 + (y - 1)2 + 2 ≥ 2 (dấu bằng xảy ra khi y = 1 và x = -4)

Vậy Min C = 2 tại x = -4 và y = 1

Khách vãng lai đã xóa