cho S= 2+23+25+27+......+297+299 C/m S chia hết cho 5;C/m S chia hết cho 10
Cho S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27. Chứng tỏ rằng S chia hết cho 3
Tính S= 1 – 2 + 3 – 4 + 5 – 6 + 7 – 8 + … + 99 – 1
mik ko hỉu cho lăm:<
Cho S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27. Chứng tỏ rằng S chia hết cho 3.
\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)
a)Tính nhanh: A= 1+5+9+13+...+101
b)Cho B = 1+2+22+24+25+26+27+28+29+210+211.
Chứng tỏ B chia hết cho 7
c)Rút gọn biểu thức C = 1+2+22+23+24+...+299.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
3/
$C=1+2+2^2+2^3+...+2^{99}$
$2C=2+2^2+2^3+2^4+...+2^{100}$
$\Rightarrow 2C-C=2^{100}-1$
$\Rightarrow C=2^{100}-1$
Cho S = 1+ 2+22 + 23 + 24 + 25 + 26 + 27
Chứng tỏ rằng S chia hết cho 3.
S = (1+ 2)+(22 + 23 )+( 24 + 27) + (26 + 25)
S= 3+45+51+51
S=3+3.15+3.17+3.17
S=3.(1+15+17.2): hết 3
tick nha nhanh nhất nè
cho S=1+2+22+23+24+25+26+27
chứng tỏ rằng S chia hết cho 3
vì tổng của S chia hết cho 3 nên S chia hết cho 3. có thế cũng hỏi =))
Chúc bạn an toàn
B= 22 + 23 + 24 + 25 + ..... + 299 chia hết cho 3
\(2^2+2^3+2^4+2^5+...+2^{99}=2^2\left(1+2\right)+2^4\left(1+2\right)+...+2^{98}\left(1+2\right)=3.2^2+3.2^4+...+3.2^{98}=3\left(2^2+2^4+...+2^{98}\right)⋮3\)
\(B=2^2+2^3+...+2^{99}\)
\(B=\left(2^2+2^3\right)+...+\left(2^4+2^5\right)+...+\left(2^{98}+2^{99}\right)\)
\(B=3.2^2+3.2^4+...+3.2^{98}\)
\(B=3.\left(2^2+2^4+...+2^{98}\right)\)
\(\Rightarrow B⋮3\)
Bài 1 : Có số tự nhiên nào mà (4+n).(7+n)= 11 không? Vì sao?
Bài 2: Tìm 3 số nguyên a,b,c thỏa mãn : a+b= -4 ; b+c= -6 ; c+a= 12
Bài 3: Tìm số tự nhiên x nhỏ nhất biết khi chia x cho 6,7,9 được dư lần lượt là 2,3,5
Bài 4: Cho A = 2+22 + 23 + 24 + 25 + 26 + 27 + 28 + 29. Không tính , hãy chứng tỏ A chia hết cho 7
Bài 5: Cho S = 3+32 + 33 + 34 + 35 + 36. Chứng tỏ rằng S chia hết cho 4
Bài 6: Chứng tỏ rằng : Biểu thức A = 31 + 32 + 33 + 34 + ..........+ 32010 chia hết cho 4
Bài 7: Cho S = 1 + 2 + 22 + 23+ 24 + 25 + 26 + 27. Chứng tỏ rằng S chia hết cho 3
Bài 8: Tìm số tự nhiên n sao cho 3 chia hết cho ( n - 1)
giải giúp mình nha 1 bài cũng được
THANK YOU VERY MUCH!
Choa S=1+2+22+23+24+25+26+27
CHỨNG MINH S CHIA HẾT CHO 3
s=[1+2]+[2+2 mũ 2]+...+[2 mũ 6+2 mũ 7]
s=1 nhân [1+2]+2 nhân [1+2]+...+2 mũ 6 nhân [1+2]
s=[1+2] nhân[1+2+...+2 mũ 6
s=3 nhân [1+2+...+2 mũ 6]
=> s chia hết cho 3
Cho S = 5 + 5^2 + 5^3 + 5^4 + .... + 5^99
a) Chứng tỏ rằng S chia hết cho 31
b) Chứng tỏ rằng S không chia hết cho 30
c) Tìm x biết 25^x - 5 = 4 x S
Làm ơn giúp em các anh chị ơi
a) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{97}.31\)
\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
b) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)
\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)
\(=5+5.30+5^3.30+...+5^{97}.30\)
\(=5+30.\left(5+5^3+...+5^{97}\right)\)
Mà \(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)
c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)
\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)
\(4S=5^{100}-5\)
\(\Rightarrow25^x-5=5^{100}-5\)
\(\Rightarrow25^x=5^{100}\)
\(\Rightarrow25^x=25^{50}\)
\(\Rightarrow x=50\)
Cho A= 20+21+22+23+24+25 +26 .........+ 299 CMR: A chia hết cho 31
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)