tính tổng S=20062-20052+20042-20032+...+42-32+22-12
12-22+32-42+…-20042+20052
\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2003-2004\right)\left(2003+2004\right)+2005^2\\ =-\left(1+2\right)-\left(3+4\right)-...-\left(2003+2004\right)+2005^2\\ =-\left(1+2+3+...+2003+2004\right)+2005^2\\ =-\dfrac{\left(2004+1\right)\cdot2004}{2}+2005^2\\ =2011015\)
4. a) Tính tổng: S = 12 + 22 + 32 + …+ 20042
b) Chứng minh: P = 12002 + 22002+…+20042 không là số chính phương.
a) có tất cả số hạng là:
(20042-12):10+1=2004
tổng là:
\(\dfrac{\text{(20042+12).2004}}{2}\)\(=20094108\)
biết:12+22+32+...+102=385.Tính tổng S=22+42+62+...+202
Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).
Đố: Biết rằng 12 + 22 + 32 + ... + 102 = 385, đố em tính nhanh được tổng:
S = 22 + 42 + 62 + ... + 202
S = 22 + 42 + 62 + ... + 202
= (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2
= 22.12 + 22.22 + 22.32 + ... + 22.102
= 22 (12 + 22 + ... + 102 )
= 4 . 385 = 1540
Biết rằng 12 + 22 + 32 +…+ 102 = 385, đố em tính nhanh được tổng S = 22 + 42 + 62 + … + 202
GIÚP MÌNH NHA,MÌNH K CHO!!!
Ta có : \(1^2+2^2+3^2+.....+10^2=385\)
\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)
\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)
\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)
Sửa đề: CHo 12+22+...+102=385. Tính S = 22+42 +...+ 202
S = 22 + 42 +...+ 202
= (1.2)2 + (2.2)2 +...+ (2.10)2
= 12.22 + 22.22 +...+ 22.102
= 22(12 + 22 +...+ 102)
= 4.385
= 1540
S= 1^2 . 2^2 + 2^2 . 2^2 + ... + 10^2 . 2^2
= 4. ( 1^2 + 2^2 +...+ 10^2) = 4 . 385 = 1540
chúc bạn học giỏi
TÌm x
d)42-(2x+32)+12:2=6
Tính tổng
S=2+7+12+17+22+...+492+497
42-(2x+32)+12:2=6
42-2x-32+6=6
=> 42-32-2x=0
=> 10-2x=0
=>2x=10=> x=5
cái tính tổng thì theo công thức tính tổng: số đầu+số cuối)x số số hạng:2
số số hạng:(497-2):5+1=100
tổng là: 499x100:2
\(1,42-\left(2x+32\right)+12:2=6\)
\(\Rightarrow42-2x-32=0\)
\(\Rightarrow10-2x=0\)
\(\Rightarrow2x=10\Leftrightarrow x=5\)
\(2,S=2+7+12+17+...+497\)
\(\Rightarrow S=\frac{\left(497+2\right)\left[\left(497-2\right):5+1\right]}{2}\)
\(\Rightarrow S=\frac{499.100}{2}=499.50\)
\(\Rightarrow S=24950\)
D) 42 - (2x + 32 ) + 12 : 2 = 6
42 - (2x + 32 ) + 12 = 6 . 2
42 - ( 2x + 32 ) + 12 = 12
42 - (2x + 32 ) = 12 - 12
42 - (2x + 32) = 0
2x + 32 = 42 - 0
2x +32 = 42
2x = 42 - 32
2x = 10
x = 10 : 2
x = 5
Vậy x = 5
Tính tổng :
S = 2 + 7 + 12 + 17 + 22 +....+ 492 + 497
= ( 497 - 2 ) : 5 + 1
= 100
= (2 + 497 ) . 100 : 2
= 24 950
Vậy S = 24 950
Tính tổng: 1 2 - 2 2 + 3 2 - 4 2 + . . . + - 1 n - 1 . n 2
Tính tổng:
12 + (-17) + 22 + (-27) + 32 + (-37) + 42 + (-47)
Tính nhanh : 20032 – 32
\(2003^2-3^2=\left(2003-3\right)\left(2003+3\right)=2000.2006=4012000\)
\(2003^2-3^2=\left(2003-3\right)\left(2003+3\right)=2000\cdot2006=2\cdot1000\cdot2006=4012000\)
Bài Toàn 16 : Tính tổng
a) S = 1 + 2 + 22 + 23 + … + 22017
b) S = 3 + 32 + 33 + ….+ 32017
c) S = 4 + 42 + 43 + … + 42017
d) S = 5 + 52 + 53 + … + 52017
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$