ai nhanh minh tich cho ne
\(x^4-2x^3+10x^2-20x=0\)
tìm x biết x^4 -2x^3 + 10x^2 -20x=0
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\) (do \(x^2+10>0;\forall x\))
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
`x^4-2x^3+10x^2-20x=0`
`<=>x^3(x-2)+10x(x-2)=0`
`<=>(x^3+10x)(x-2)=0`
`<=>x(x^2+10)(x-2)=0`
`<=>`$\left[\begin{matrix} x=0\\ x^2+10=0\\x-2=0\end{matrix}\right.$
`<=>`$\left[\begin{matrix} x=0\\ x^2=-10 \ \rm(loại) \\x=2\end{matrix}\right.$
Vậy `S={0;2}`
Ta có: \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
tim x
x^2-5x-4(x-5)=0
2x(x+6)=7x+42
x^3-5x^2+x-5=0
x^4-2x^3+10x^2-20x=0
(2x-3)-x^2+10x-25=0
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...
1.gia tri x<0 thoa man (2x-3)2=(x+5)2
2.tap hop cac gia tri cua x thoa man x4-2x3+10x2-20x=0 la S(....)
3.phan tich da thuc xy-12+3x-4 ta duoc (x+a)(y+b) khi do a+b=?
tìm x:
x^3-16x=0
x^4-2x^3+10x^2-20x=0
(2x-3)^2=(x+5)^2
x^2(x-1)-4x^2+8x-4=0
*\(\left(2x-3\right)^2=\left(x+5\right)^2\)
\(\Rightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Rightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
* \(x^3-16x=0\)
\(\Rightarrow x\left(x^2-16\right)=0\)
\(\Rightarrow x\left(x^2-4^2\right)=0\)
\(\Rightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
*\(x^4-2x^3+10x^2-20x=0\)
\(\Rightarrow\left(x^4+10x^2\right)-\left(2x^3+20x\right)=0\)
\(\Rightarrow x^2\left(x^2+10\right)-2x\left(x^2+10\right)=0\)
\(\Rightarrow\left(x^2+10\right)\left(x^2-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\varnothing\\x=2\end{matrix}\right.\)
x4-2x3=10x2-20x=0
Tìm x :
\(x^4-2x^3+10x^2-20x=0\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x\left(x^2+10\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x=0\end{cases}}\)(vì \(x^2+10\ge0\) với mọi x)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
1) x(x-5)-4x+20=0
2) 3(x+1)+x(x+1)
3) 2x^3+x=0
4) x^3-16x=0
5) x^2+6x=-9
6) x^4-2x^3+10x^2-20x=0
7) (2x-3)^2=(x+5)^2
1, x(x - 5) - 4x + 20 = 0
=> x(x - 5) - 4(x - 5) = 0
=> (x - 4)(x - 5) = 0
=> x - 4 = 0 hoặc x - 5 = 0
=> x = 4 hoặc x = 5
=> x thuộc {4; 5}
2, 3(x + 1) + x(x + 1)
= (3 + x)(x + 1)
3, 2x3 + x = 0
=> x(2x2 + 1) = 0
=> x = 0 hoặc 2x2 + 1 = 0
=> x = 0 hoặc 2x2 = -1
=> x = 0 hoặc x2 = -1/2 (vô lí vì x2 > hoặc = 0 với mọi x)
=> x = 0
4, x3 - 16x = 0
=> x(x2 - 16) = 0
=> x = 0 hoặc x2 - 16 = 0
=> x = 0 hoặc x2 = 16
=> x = 0 hoặc x = 4 hoặc x = -4
=> x thuộc {-4; 0; 4}
5, x2 + 6x = -9
=> x2 + 6x + 9 = 0
=> x2 + 2.3.x + 32 = 0
=> (x + 3)2 = 0
=> x + 3 = 0
=> x = -3
6, x4 - 2x3 + 10x2 - 20x = 0
=> x2(x2 + 10) - 2x(x2 + 10) = 0
=> (x2 + 2x)(x2 + 10) = 0
=> x(x +2)(x2 + 10) = 0
-TH1: x = 0
-TH2: x + 2 = 0 => x = -2
-TH3: x2 + 10 = 0 => x2 = -10 (vô lí vì x2 > hoặc = 0 với mọi x)
=> x thuộc {0; -2}
7, (2x - 3)2 = (x + 5)2
-TH1: 2x - 3 = x + 5
=> x = 8
- TH2: - 2x + 3 = x + 5
=> -3x = 2
=> x = \(\frac{-2}{3}\)
- TH3: 2x - 3 = - x - 5
=> 3x = -2
=> x = \(\frac{-2}{3}\)
- TH4: - 2x + 3 = - x - 5
=> -x = -8
=> x = 8`
=> x thuộc {\(\frac{-2}{3}\); 8}
tìm x:
x(x-5)-4x+20=0
x(x+6)-7x-42=0
x^3-5x^2+x-5=0
x^4-2x^3+10x^3-20x=0
a. x(x-5) -4x+20=0
<=> x(x-5) - 4(x-5)=0
<=> (x-5)(x-4)=0
<=>(x-5)=0 hoặc x-4=0
<=> x=5 hoặc x=4
Vậy x={4;5}
b.tương tự
c. x3-5x2+x-5 =0
<=> x2(x-5) + (x-5) = 0
<=> (x-5) (x2+1) = 0
<=> x-5=0 hoặc x2+1=0(loại vì x2=-1)
<=> x=5
vậy x=5
d. bạn kiểm tra lại đề
Tìm x :
a) \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
b) \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x^2+6x-7x-42=0\)
\(\Leftrightarrow\left(x^2+6x\right)-\left(7x+42\right)=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-6\end{matrix}\right.\)
c) \(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\left(x^3-5x^2\right)+\left(x-5\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vôlí\right)\\x=5\end{matrix}\right.\)
d) \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)+\left(10x^2-20x\right)=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^3+10x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x\left(x^2+10\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x^2+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x^2=-10\left(vôlí\right)|x^2\ge0\forall x\end{matrix}\right.\)
tìm x
a/ (x-5)^2-49=0
b/ (x+11)^2=121
c/ x.(x+7)-6x-42=0
d/ x^4-2x^3+10x^2-20x=0
a/ (x-5)^2-49=0
<=>(x-5)2-72
<=>(x-5-7)(x-5+7)=0
<=>(x-12)(x+2)=0
<=>x-12=0 hoặc x+2=0
<=>x=12 hoặc x=-2
vậy x=12 hoặc x=-2
b/ (x+11)^2=121
<=>(x+11)2-121=0
<=>(x+11)2-112=0
<=>(x+11-11)(x+11+11)=0
<=>x(x+22)=0
<=>x=0 hoặc x+22=0
<=>x=0 hoặc x=-22
vậy x=0 hoặc x=-22
c/ x.(x+7)-6x-42=0
<=>x2+7x-6x-42=0
<=>x2+x-42=0
<=>x2-6x+7x-42=0
<=>x(x-6)+7(x-6)=0
<=>(x-6)(x-7)=0
<=>x-6=0 hoặc x-7=0
<=>x=6 hoặc x=7
vậy x=6;7
d/ x^4-2x^3+10x^2-20x=0
<=>x3(x-2)+10x(x-2)=0
<=>(x-2)(x3+10x)=0
<=>(x-2)x(x2+10)=0
<=>x-2=0 hoặc x=0 hoặc x2+10=0
<=>x=2 hoặc x=0 hoặc x2=-10(vô lí)
vậy x=2;0
a)(x-5)2-49=0
<=>(x-5-7)(x-5+7)=0
<=>(x-12)(x+2)=0
<=>x-12=0 hoặc x+2=0
<=>x=12 hoặc x=-2
b)(x+11)2=121
<=>(x+11)2-121=0
<=>(x+11-11)(x+11+11)=0
<=>x(x+22)=0
<=>x=0 hoặc x+22=0
<=>x=0 hoặc x=-22
c)x(x+7)-6x-42=0
<=>x(x+7)-(6x+42)=0
<=>x(x+7)-6(x+7)=0
<=>(x+7)(x-6)=0
<=>x+7=0 hoặc x-6=0
<=>x=-7 hoặc x=6
d)x4-2x3+10x2-20x=0
<=>x(x3-2x2+10x-20)=0
<=>x[(x3-2x2)+(10x-20)]=0
<=>x[x2(x-2)+10(x-2)]=0
<=>x(x-2)(x2+10)=0
Do x2>0=>x2+10>0
=>x(x-2)=0
<=>x=0 hoặc x-2=0
<=>x=0 hoặc x=2