cho pt x^2 - 2(m-1)x +m^2-3=0 tìm m để pt có 2 nghiệm thỏa mãn /x1-x2/= căn 22-x1.x2
giúp mik vs
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho x1, x2 là nghiệm của pt x^2 -(m-1)x-2=0. Tìm m để pt có 2 nghiệm thỏa mãn x1/x2=x2^2-3/x1^2-3
\(x^2-\left(m-1\right)x-2=0\)
a=1; b=-m+1; c=-2
Vì a*c=-2<0
nên phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m-1\right)\right]}{1}=m-1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(m-1\right)^2-4\cdot\left(-2\right)=\left(m-1\right)^2+8\)
=>\(x_1-x_2=\pm\sqrt{\left(m-1\right)^2+8}\)
\(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)
=>\(x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)
=>\(x_1^3-x_2^3=3x_1-3x_2\)
=>\(\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2-3\right)=0\)
=>\(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2-3\right]=0\)
=>\(\left[{}\begin{matrix}x_1-x_2=0\\\left(m-1\right)^2-\left(-2\right)-3=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\sqrt{\left(m-1\right)^2+8}=0\left(vôlý\right)\\\left(m-1\right)^2-1=0\end{matrix}\right.\)
=>\(\left(m-1\right)^2=1\)
=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)
Cho pt : x^2 -2(m-1)x -3+ 2m=0 Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1 bình + x2 -2m =0
Cho pt : x^2-2?(m-1)x+m+1=0
a) GIẢI pt vs m=-4
b) Vs giá trị nào của m thì pt có 2 nghiệm phân biệt
c) Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn x1=3x2
Cho pt bậc 2 : x^2-2(m+1)x-3=0. Tìm điều kiện của m để pt có 2 nghiệm x1,x2 thỏa mãn x1^2+x2^2=10
Vì a*c=-3<0
nên phương trình luôn có 2 nghiệm pb
x1^2+x2^2=10
=>(x1+x2)^2-2x1x2=10
=>(2m+2)^2+6=10
=>(2m+2)^2=4
=>2m+2=2 hoặc 2m+2=-2
=>m=-2 hoặc m=0
Cho phương trình: x^2 + 4x + m + 1 = 0. Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn pt \(\dfrac{x1}{x2}+\dfrac{x2}{x1}=\dfrac{10}{3}\)
PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`
Viet: `x_1+x_2=-4`
`x_1 x_2=m+1`
`(x_1)/(x_2)+(x_2)/(x_1)=10/3`
`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`
`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`
`<=> (4^2-2(m+1))/(m+1)=10/3`
`<=> m=2` (TM)
Vậy `m=2`.
Cho pt x^2 + 2(m+1)x +4m - 4 =0 a) Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn x1^2 + x2^2 + 3x1.x2 = 0
\(x^2+2\left(m+1\right)+4m-4=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2+3x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)
\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)
\(\Leftrightarrow4m^2+8m+4+4m-4=0\)
\(\Leftrightarrow4m^2+12m=0\)
\(\Leftrightarrow4m\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)
x^2 - (m-2)*x -6 = 0. Tìm m để pt có 2 nghiệm phân biệt x1 x2 thỏa mãn x1 + x2 - 3 x1x2=0
Giúp mk vs
\(ac=-6< 0\Rightarrow\) phương trình đã cho luôn luôn có 2 nghiệm pb (trái dấu)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-6\end{matrix}\right.\)
Thế vào đề bài:
\(m-2-3\left(-6\right)=0\)
\(\Leftrightarrow m+16=0\Leftrightarrow m=-16\)
\(x^2-\left(m-2\right)x-6=0\left(1\right)\)
\(\Rightarrow\Delta=b^2-4ac=\left[-\left(m-2\right)\right]^2-4.\left(-6\right)\)
\(=m^2-4m+4+24=m^2-4m+28\)
\(=\left(m-2\right)^2+24\)
Thấy \(\left(m-2\right)^2\ge0\)\(\Rightarrow\left(m-2\right)^2+24>0\forall m\)
Vậy phương trình luân có 2 nghiệm phân biệt \(x_1,x_2\)
Áp dụng \(Vi-ét \) ta có :
\(S=x_1+x_2=\dfrac{-b}{a}=m-2\)
\(P=x_1.x_2=\dfrac{c}{a}=-6\)
Ta có \(x_1+x_2-3.x_1.x_2=0\)
\(\Leftrightarrow m-2-3.\left(-6\right)=0\Rightarrow m=-16\)
Cho pt xã -4x4 m=0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức 2x1 + x2 = 1 Cho pt: 2x2 3x-2m +3 = 0 ("). Tìm m để phương trình (") có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1/x2 + xz/x1 =3 Cho pt xã 4x - m + 3 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức x1-x2=7 Giải gấp chi tiết giúp e vs ạ
cho pt: x^2-2(m-3)x+3m^2-8m+5=0.Tìm m để pt có hai nghiệm x1,x2 thỏa mãn x1^2+2x^2-3x1x2=x1-x2