Tìm X :
7x . (x - 3) . (3x - 21) = 0
Tìm x biết:(3x -12).(21-7x)=0
7x-21=0
(3x-5)(x+3)=0
a. \(7x-21=0\)
\(\Leftrightarrow7x=21\)
\(\Leftrightarrow x=3\)
b. \(\left(3x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-3\end{matrix}\right.\)
\(7x-21=0\)
\(\Leftrightarrow7\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Tập nghiệm của phương trình là \(S=\left\{3\right\}\)
\(\left(3x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=5\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-3\end{matrix}\right.\)
Tập nghiệm của phương trình là : \(S=\left\{\dfrac{5}{3};-3\right\}\)
a, 3-x=x-5 b, 7x+21=0 c, 0,25x+1,5=0 d, 6,36-5,3x=0
e, 3x+1=7x-11 f, 15-4x=6x+5 g, 2(x+1)=3+2x
h, 3(1-x)+4x-3 = 0
a: =>-2x=-8
hay x=4
b: =>7x=-21
hay x=-3
c: =>0,25x=-1,5
hay x=-6
d: =>5,3x=6,36
hay x=6/5
e: =>-4x=-12
hay x=3
f: =>-10x=-10
hay x=1
g: =>2x+2-3-2x=0
=>-1=0(vô lý)
h: =>3-3x+4x-3=0
=>x=0
a,
\(3-x=x-5\\ \Leftrightarrow3x-x+5=0\Leftrightarrow2x+5=0\)
\(\Rightarrow x=-\dfrac{5}{2}\)
b, \(\Rightarrow x=-\dfrac{21}{7}=-3\)
c, \(\Leftrightarrow x=\left(0-1,5\right):0,25=-6\)
a. <=> 2x=8 hay x=4
b.<=> x= -21/7 = -3
c. <=> x= -1,5/ 0,25=-6
d. <=> x= -6,36/-5,3=1,2
e.<=> 4x=12 hay x= 3
f. <=> 10x = 10 hay x = 1
g. <=> 2x +2 = 3 + 2x
<=> 2=3 ( vô lí )
h.<=> 3 - 3x + 4x -3 =0
<=> x=0
Tìm x , biết :
a. 3x3 - 12x = 0
b. x2 (x - 3) + 12 - 4x = 0
c. (3x - 1)2 - (2x - 3)2 = 0
d. x2 - 4x - 21 = 0
e. 3x2 - 7x - 10 = 0
a) \(3x^3-12x=0\)
=> \(3x\left(x^2-4\right)=0\)
=> \(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
=> \(x^2\left(x-3\right)+\left(-4x+12\right)=0\)
=> \(x^2\left(x-3\right)-4x+12=0\)
=> \(x^2\left(x-3\right)-4\left(x-3\right)=0\)
=> \(\left(x-3\right)\left(x^2-4\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)
=> \(\left[3x-1-\left(2x-3\right)\right]\left(3x-1+2x-3\right)=0\)
=> \(\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\)
=> \(\left(x+2\right)\left(5x-4\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}\)
d) \(x^2-4x-21=0\)
=> \(x^2+3x-7x-21=0\)
=> \(x\left(x+3\right)-7\left(x+3\right)=0\)
=> (x + 3)(x - 7) = 0 => x = -3 hoặc x = 7
e) 3x2 - 7x - 10 = 0
=> 3x2 + 3x - 10x - 10 = 0
=> 3x(x + 1) - 10(x + 1) = 0
=> (x + 1)(3x - 10) = 0
=> x = -1 hoặc x = 10/3
a) \(3x^3-12x=0\)
\(\Leftrightarrow3x\left(x^2-4\right)=0\)
\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{-2;0;2\right\}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\in\left\{-2;2;3\right\}\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5x-4\right)=0\)
\(\Leftrightarrow x\in\left\{-2;\frac{4}{5}\right\}\)
d) \(x^2-4x-21=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}\)
e) \(3x^2-7x-10=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{10}{3}\end{cases}}\)
Tìm x , biết :
a. 3x3 - 12x = 0
b. x2 (x - 3) + 12 - 4x = 0
c. (3x - 1)2 - (2x - 3)2 = 0
d. x2 - 4x - 21 = 0
e. 3x2 - 7x - 10 = 0
Ta có : 3x3 - 12x = 0
=> 3x(x2 - 4) = 0
=> x(x - 2)(x + 2) = 0
=> \(x\in\left\{0;2;-2\right\}\)
b) x2(x - 3) + 12 - 4x = 0
=> x2(x - 3) - 4(x - 3) = 0
=> (x2 - 4)(x - 3) = 0
=> \(\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}\)
Vậy \(x\in\left\{-2;2;3\right\}\)
c) (3x - 1)2 - (2x - 3)2 = 0
=> (3x - 1 - 2x + 3)(3x - 1 + 2x - 3) = 0
=> (x + 2)(5x - 4) = 0
=> \(\orbr{\begin{cases}x+2=0\\5x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0,8\end{cases}}\)
Vậy \(x\in\left\{-2;0,8\right\}\)
d) x2 - 4x - 21 = 0
=> x2 - 7x + 3x - 21 = 0
=> x(x - 7) + 3(x - 7) = 0
=> (x + 3)(x - 7) = 0
=> \(\orbr{\begin{cases}x+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=7\end{cases}}\)
Vậy \(x\in\left\{-3;7\right\}\)
e) 3x2 - 7x - 10 = 0
=> 3x2 + 3x - 10x - 10 = 0
=> 3x(x + 1) - 10(x + 1) = 0
=> (3x - 10)(x + 1) = 0
=> \(\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}\)
Vậy \(x\in\left\{\frac{10}{3};-1\right\}\)
Tìm x
491-(x + 83) = 336
(517-x) + 131 =631
88 - 3(7 +x) = 631
(7x - 15) : 3 =2
(x-1)(2x -6)=0
(2 - x) (3x -21) (x-5) = 0
a) (4x-10)(24+3x)=0
b)7x-21+x(x-3)=0
c)x^2-1=2x(x+1)
a, \(\left(4x-10\right)\left(24+3x\right)=0\)
⇔\(\left[{}\begin{matrix}4x-10=0\\24+3x=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}4x=10\\3x=-24\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=\frac{5}{2}\\x=-8\end{matrix}\right.\)
Vậy...
b,\(7x-21+x\left(x-3\right)=0\)
⇔\(7\left(x-3\right)+x\left(x-3\right)=0\)
⇔\(\left(7+x\right)\left(x-3\right)=0\)
⇔\(\left[{}\begin{matrix}7+x=0\\x-3=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-7\\x=3\end{matrix}\right.\)
Vậy...
c,Mình bận quá.Xin lỗi mình xin không làm!
Gợi ý:
Phân tích vế trái sang hằng đẳng thức số 3 rồi tính nhé!
a) Ta có: \(\left(4x-10\right)\left(24+3x\right)=0\)
\(\Leftrightarrow6\left(2x-5\right)\left(8+x\right)=0\)
mà 6≠0
nên \(\left[{}\begin{matrix}2x-5=0\\8+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-8\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5}{2};-8\right\}\)
b) Ta có: \(7x-21+x\left(x-3\right)=0\)
\(\Leftrightarrow7\left(x-3\right)+x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\7+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)
Vậy: S={3;-7}
c) Ta có: \(x^2-1=2x\left(x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-x-1\right)=0\)
\(\Leftrightarrow-\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}
c,\(x^2-1=2x\left(x+1\right)\)
⇔\(\left(x+1\right)\left(x-1\right)=2x\left(x+1\right)\)
⇔\(\left(x+1\right)\left(x-1\right)-2x\left(x+1\right)=0\)
⇔\(\left(x+1\right)\left(-x-1\right)=0\)
⇔\(\left[{}\begin{matrix}x+1=0\\-x-1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\)
Vậy...
bài 5 ; tìm x
f, a mũ 2 + x -x mũ 2 - a = a
g, x mũ 2 + 3x - ( 2x + 6 ) = 0
h, 5x + 20 - x mũ 2 - 4x =0
m, x mũ 3 - 5x mũ 2 - x + 5 = 0
n, x ( x - 3 ) - 7x + 21 = 0
Bài 5 :
f, bạn xem lại đề hay là tìm x chứa tham số a ?
g, \(x^2+3x-\left(2x+6\right)=0\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow x=-3;x=2\)
h, \(5x+20-x^2-4x=0\Leftrightarrow5\left(x+4\right)-x\left(x+4\right)=0\)
\(\Leftrightarrow\left(5-x\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=5\)
m, \(x^3-5x^2-x+5=0\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\Leftrightarrow x=\pm1;x=5\)
n, \(x\left(x-3\right)-7x+21=0\Leftrightarrow x\left(x-3\right)-7\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-3\right)=0\Leftrightarrow x=3;x=7\)
Giải các phương trình sau
a ( 3x-1)^2 - (x+3)^2
b x^3-x/49 = 0
c x^2 -7x+12
d 4x^2 -3x -1 =0
e . 29-x/21 + 27-x/23 + 25-x/25 + 23-x/28 + 21-x/29
a) \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)
\(=>\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(=>\left(4x+2\right)\left(2x-4\right)=0\)
\(=>4\left(2x+1\right)\left(x-2\right)=0\)
\(=>\orbr{\begin{cases}2x+1=0\\x-2=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=-\frac{1}{2}\\x=2\end{cases}}\)
b)\(x^3-\frac{x}{49}=0=>x\left(x^2-\frac{1}{49}\right)=0=>x\left(x-\frac{1}{7}\right)\left(x+\frac{1}{7}\right)=0\)
\(=>x=0\)hoặc \(x=\frac{1}{7}\) hoặc \(x=-\frac{1}{7}\)
a)\(\(\left(3x-1\right)^2-\left(x+3\right)^2=0\)\)
\(\(\Leftrightarrow\left(3x-1-x-3\right)\left(3x-1+x+3\right)=0\)\)
\(\(\Leftrightarrow\left(2x-4\right)\left(4x+2\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\4x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}}\)\)
b)\(\(x^3-\frac{x}{49}=0\)\)
\(\(\Leftrightarrow\frac{49x^3-x}{49}=0\)\)
\(\(\Leftrightarrow x\left(49x^2-1\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x=0\\49x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(7x-1\right)\left(7x+1\right)=0\end{cases}}}\)\)\
\(\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7};x=-\frac{1}{7}\end{cases}}\)\)
c)\(\(x^2-7x+12=0\)\)
\(\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}}\)\)
d) \(\(4x^2-3x-1=0\)\)
\(\(\Leftrightarrow4x^2-4x+x-1=0\)\)
\(\(\Leftrightarrow4x\left(x-1\right)+\left(x-1\right)=0\)\)
\(\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}}\)\)
e) Tham khảo tại : [Toán 8]Giải phương trình | Cộng đồng học sinh Việt Nam - HOCMAI Forum
https://diendan.hocmai.vn/threads/toan-8-giai-phuong-trinh.290061/
_Y nguyệt_
a thiếu đề bạn nhé
b) \(x^3-\frac{x}{49}=0\)
\(\Rightarrow x\left(x^2-\frac{1}{49}\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{49}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7}\end{cases}}}\)
Vậy.........
c) \(x^2-7x++12=0\)
\(\Rightarrow\left(x-3,5\right)^2-0,5^2=0\)
\(\Rightarrow\left(x-3,5+0,5\right)\left(x-3,5-0,5\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}}\)
Vậy.....
d) \(4x^2-3x-1=0\)
\(\Rightarrow4x^2-3x+0,5625-1,5625=0\)
\(\Rightarrow\left(2x-0,75\right)^2-1,25^2=0\)
\(\Rightarrow\left(2x-0,75+1,25\right)\left(2x-0,75-1,25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+0,5=0\\2x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-0,25\\x=1\end{cases}}}\)
Vậy.....