cho tam giác ABc cân tại A.Đường trung tuyến AM,BN C/m:
a) tam giác AMN cân
b)Tứ giác BNMA là hình thang cân
ho tam giác ABc cân tại A.Đường trung tuyến AM,BN C/m:
a) tam giác AMN cân
b)Tứ giác BMNA là hình thang cân
Cho tam giác ABC cân tại A. Đường trung tuyến AM, BN. Chứng minh :
a) Tam giác AMN cân.
b) Tứ giác BNMC là hình thang cân.
bạn ơi đề đúng ko zậy bạn ???????????
Cho tam giác ABC cân tại A. Đường trung tuyến AM, BN. Chứng minh:
a) Tam giác AMN cân.
b) Tứ giác BNMC là hình thang cân .
a) MN la duong trung binh tam giac ABC =>MN=AB/2.
Ma AB=AC=>AB/2=AC/2=AN
=>AN=MN=>Tam giac AMN can tai N.
b) De bai sai
Cho tam giác ABC cân tại A, trên AB lấy điểm M, vẽ tia Mx//BC cắt AC tại N a) Chứng minh tam giác AMN là tam giác cân b) C/m tứ giác BMNC là hình thang cân c) C/m BN=CM
a: Xét ΔABC có
MN//BC
nên \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
mà AB=AC
nên AM=AN
Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
Cho tam giác ABC cân tại A, trên AB lấy điểm M, vẽ tia Mx//BC cắt AC tại N a) Chứng minh tam giác AMN là tam giác cân b) C/m tứ giác BMNC là hình thang cân c) C/m BN=CM
a) Ta có: MN//BC(gt)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ABC}\\\widehat{ANM}=\widehat{ACB}\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
=> Tam giác AMN cân tại A
b) Xét tứ giác BMNC có:
MN//BC
\(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)
=> BMNC là hthang cân
c) Ta có: BMNC là hthang cân
=> BN=MC
Cho tam giác ABC cân tại A ,hai đường trung tuyến BD,CE.Chứng minh:
a)Tam giác AED cân b)Tứ giác BCDE là hình thang cân
a) Do ∆ABC cân tại A
⇒ AB = AC (1)
Do BD là đường trung tuyến
⇒ D là trung điểm của AC
⇒ AD = CD (2)
Do CE là đường trung tuyến
⇒ E là trung điểm của AB
⇒ AE = BE (3)
Từ (1), (2) và (3)
⇒ AE = AD
∆AED có:
⇒ AE = AD (cmt)
⇒ ∆AED cân tại A
b) ∆AED cân tại A (cmt)
⇒ ∠AED = ∠ADE = (180⁰ - ∠A) : 2 (4)
∆ABC cân tại A
⇒ ∠ABC = ∠ACB = (180⁰ - ∠A) : 2 (5)
Từ (4) và (5)
⇒ ∠AED = ∠ABC
Mà ∠AED và ∠ABC là hai góc đồng vị
⇒ ED // BC
Tứ giác BCDE có:
ED // BC (cmt)
⇒ BCDE là hình thang
Mà ∠CBE = ∠BCD (∆ABC cân tại A)
⇒ BCDE là hình thang cân
Cho Tam giác ABC cân tại A, Hai đường trung tuyến BD và CE. Chứng minh : a, tam giác ADEcân tại A. b tam giác ABD=tam giác ACE . c, Tứ giác BCDE là hình thang cân.
cho tam giác nhon ABC , AM, BN ,CP là các đường trung tuyến . Qua N kẻ đường thẳng song song với PC cắt BC tại F . Các đường thẳng kẻ qua F song song với BN và kẻ qua B song song với CP cát nhau tại D.
a, tứ giác CPNF là hình gì ? vì sao ?
b, chứng minh tứ giác BDFN là hình bình hành
c, chứng minh tứ giác PNCD là hình thang cân
d, chứng minh AM = DN
e, tam giác ABC thỏa mãn điều kiện gì thì tứ giác PNCD là hình thang cân ?
mọi người giúp mình với mình ko hiểu bài trên cho lắm
Cho tam giác ABC cân tại A , trên AB và AC lấy các điểm M,N sao cho BM=CN
a, CM tam giác AMN cân và AMN =ABC
b, MNBC là hình gì
c, Gọi E,F,G,H là trung điểm của AM ,AN NC, MB . Chứng minh EFGH Là hình thang cân
d, EF =3cm ,GH = 8CM . Tính BC
a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)
AN+NC=AC(N nằm giữa A và C)
mà MB=NC(gt)
và AB=AC(ΔABC cân tại A)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)
mà hai góc này là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác MNBC có MN//BC(cmt)
nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
c) Xét ΔAMN có
E là trung điểm của AM(gt)
F là trung điểm của AN(gt)
Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)
Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà MN//BC(cmt)
nên EF//BC(3)
Xét hình thang MNCB(MN//CB) có
H là trung điểm của MB(gt)
G là trung điểm của NC(gt)
Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)
Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)
Từ (3) và (4) suy ra EF//HG
Ta có: HG//BC(cmt)
nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{EHG}=\widehat{FGH}\)
Xét tứ giác EFGH có EF//HG(cmt)
nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)
Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)
nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)