Cho a > 1. Tìm GTNN của biểu thức: P = (2a^2 + 3a + 8)/a
Tìm GTNN của biểu thức \(A=a^4-2a^3+3a^2-4a+5.\)
A=(a4-2a3+a2) +2(a2-2a+1) +3
=(a2-a)2 + 2(a-1)2 + 3 \(\ge\)3
Dấu bằng xay ra khi a=1
A=a4 -2a3 +3a2 -4a +5
=a4 -2a3 +a2 +2a2-4a+2+3
=(a4 -2a3 +a2) +2(a2 -2a +1)+3
=(a2-a)2 +2(a-1)2 +3
\(\hept{\begin{cases}\left(a^2-a\right)^2\ge3\\2\left(a-1\right)^2\ge3\end{cases}\Rightarrow A_{Min}=3}\)
tìm GTNN của biểu thức A=\(a^4-2a^3+3a^2-4a+5\)
a, Cho a,b,c > 0. cmr : P = 1/a+3b + 1/b+3c + 1/c+3a >= 1/a+2b+c + 1/b+2c+a + 1/c+2a+b
b, Cho a,b > 0 : a^2 + b^2 = 18 . Tìm GTNN của biểu thức : Q = 2a + 2b + a^2/b + b^2/a
Ai làm nhanh và đúng nhất mk tick cho nha
Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ
Cho biểu thức : P = \(\dfrac{2a-1}{3a-1}+\dfrac{5-a}{3a+1}\)
a , Tìm giá trị P khi a = -1
b , Tìm giá trị của P khi 10a^2+5a=3
c , Tìm GTNN của biểu thức a = \(\dfrac{3y^2-4y}{1+y^2}\)
Cho a,b>0: a+b=2. Tìm GTNN của:
P = \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{3a^2+2b^2}{3a^3+2b^3}\)
Mình nghĩ là chứng minh mỗi phân thức <= một biểu thức nào đó theo phương pháp biến đổi tương đương rồi cộng lại, nhưng nhiều ngày rồi vẫn chưa ra kết quả. Mong mọi người giúp đỡ.
Tìm các giá trị của a sao cho biểu thức sau có giá trị bằng 2.
2a-9/2a-5 +3a/3a-2
Tìm các giá trị của a sao cho mỗi biểu thức có giá trị bằng 2
a) \(\frac{2a^2-3a-2}{a^2-4}\)
b)\(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}\)
Cho các số thực dương a,b,c thoả mãn a+b+c=2016
Tìm GTNN của biểu thức:\(P=\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
Ta có : \(P=\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
\(\Rightarrow P+3=\frac{2a+3b+3c+1}{2015+a}+1+\frac{3a+2b+3c}{2016+b}+1+\frac{3a+3b+2c-1}{2017+c}+1\)
\(=\frac{3a+3b+3c+2016}{2015+a}+\frac{3a+3b+3c+2016}{2016+b}+\frac{3a+3b+3c+2016}{2017+c}\)
\(=\left(3a+3b+3c+2016\right)\left(\frac{1}{2015+a}+\frac{1}{2016+b}+\frac{1}{2017+c}\right)\)
\(=4.2016\left(\frac{1}{2015+a}+\frac{1}{2016+b}+\frac{1}{2017+c}\right)\) \(\left(a+b+c=2016\right)\)
\(=8064.\left(\frac{1}{2015+a}+\frac{1}{2016+b}+\frac{1}{2017+c}\right)\)
Vì a ; b ; c dương , áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\), ta có :
\(\frac{1}{2015+a}+\frac{1}{2016+b}+\frac{1}{2017+c}\ge\frac{9}{2015+2016+2017+a+b+c}=\frac{9}{8064}\)
\(\Rightarrow P+3\ge8064.\frac{9}{8064}=9\) \(\Rightarrow P\ge6\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2015+a=2016+b=2017+c\\a+b+c=2016\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1=c+2\\a+b+c=2016\end{matrix}\right.\)
\(\Leftrightarrow a=673;b=672;c=671\)
Vậy ...
Cho a,b dương thỏa a + b = 2
Tìm GTNN của biểu thức 2a^2 + 3b^2 + 3ab
Ta có : \(a+b=2\)
\(\Rightarrow\)\(a = 2 -b\)
\(A = 2a^2 +3b^2 +3ab\)
\(A = 2a^2 + 3b. (a+b)\)
\(A = 2. (2-b)^2+3b. (2-b+b)\)
\(A = 2. ( b^2 -4b+4)+6b\)
\(A = 2b^2 -8b+8+6b\)
\(A = 2b^2 -2b+8\)
\(A = 2. ( b ^2 -b+4)\)
\(A=2. (b^2 -2.b.{1\over2}+({1\over2})^2-({1\over2})^2+4)\)
\(A = 2. [ (b -{1\over2})^2-{15\over4}]\)
\(A =2. (b-{1\over2})^2 + {15\over2}\)\(\ge\)\({15\over2}\)
\(Min A ={15\over2}\)\(\Leftrightarrow\)\(a = {3\over2};b={1\over2}\)
Ta có : a+b=2→b=2−a
→P=2a2+3b2+3ab=2a2+3b(a+b)=2a2+3b.2=2a2+6b=2a2+6(2−a)=2a2−6a+12
→P=2(a2−3a)+12
→P=2(a2−2a.32+94)+152
→P=2(a−32)2+152≥152
→GTNNP=152
Dấu = xảy ra khi a−32=0
Thăm nhà mình nha:tthnew's blog. Thanks mn!
Cách 2:
Gọi biểu thức trên là A. Dự đoán \(Min=\frac{15}{2}\).
Xét hiệu \(A-\frac{15}{2}=\frac{\left(a-3b\right)^2}{8}\ge0\)
Đẳng thức xảy ra khi \(a=\frac{3}{2};b=\frac{1}{2}\)