\(\sqrt{x-2\sqrt{x-1}}\) tìm x để căn thức xác đinh
làm nhanh giúp mk nha
Tìm ĐK để căn thức xác định:
a) \(\sqrt{x-9}+\sqrt{6-x}\)
b) \(\sqrt{\dfrac{-1}{x^2}}\)
a. không có ĐK, vì muốn a đc xác định cần \(\sqrt{x-9}\) và \(\sqrt{6-x}\) \(\ge0\)
mà điều kiện để \(\sqrt{x-9}\) và \(\sqrt{6-x}\ge0\) là \(9\le x\le6\)
Dễ thấy không có số nào tương thích với x
Tìm điều kiện của x để biểu thức xác định:ở biểu thức A có 2 dấu căn nha
A=\(\frac{\sqrt{x-2\sqrt{x-1}}}{x-1}\)
B=\(\sqrt{\frac{1-3x}{2x^3-x^2+2x-1}}\)
Bài 2:Tính:
A=\(\sqrt{227-30\sqrt{2}}+\sqrt{12^3+22\sqrt{2}}\)(Đề bài sai thì sửa lại giúp mình rồi trả lời nha)
Tìm x để căn thức sau xác định
a)A=\(\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\)
b)B=\(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}\)
a) A xác định khi:
x - 3 ≥ 0 và 4 - x > 0
⇔ x ≥ 3 và x < 4
⇔ 3 ≤ x < 4
b) B xác định khi x - 1 > 0 và x - 2 ≠ 0
⇔ x > 1 và x ≠ 2
a) \(A=\sqrt[]{x-3}-\sqrt[]{\dfrac{1}{4-x}}\left(1\right)\)
\(\left(1\right)xđ\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\4-x>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x< 4\end{matrix}\right.\)
\(\Leftrightarrow3\le x< 4\)
b) \(B=\dfrac{1}{\sqrt[]{x-1}}+\dfrac{2}{\sqrt[]{x^2-4x+4}}\left(1\right)\)
\(\left(1\right)xđ\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x^2-4x+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\\left(x-2\right)^2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
Tìm x để căn thức sau xác định
\(\sqrt{x+1}+\sqrt{1-x}\)
ĐKXĐ: x + 1 ≥ 0 và 1 - x ≥ 0
⇔ x ≥ -1 và x ≤ 1
⇔ -1 ≤ x ≤ 1
Cho biểu thức P= \(\frac{\sqrt{x}}{\sqrt{x}+1}\)- \(\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
a, tìm điều kiên của x để P xác đinh và rút gon P
b, tìm các giá tri nguyên của x để P đat giá tri nguyên
giúp mk nha mk đang cần rất gấp
Tìm x để căn thức sau xác định
\(\sqrt{\dfrac{1}{2-x}}\)
Để \(\sqrt{\dfrac{1}{2-x}}\) xác định khi:
\(2-x>0\)
\(\Leftrightarrow-x>-2\)
\(\Leftrightarrow x< 2\)
Tìm ĐK để căn thức sau xác định:
a) \(\sqrt{x^2+3x-10}\)
b) \(\sqrt{\dfrac{4x-4-x^2}{5}}\)
c) \(\sqrt{x-4\sqrt{x-4}}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-5\end{matrix}\right.\)
b: ĐKXĐ: \(x=2\)
c: ĐKXĐ: \(x\ge4\)
tìm x để căn thức sau được xác định
1)\(\sqrt{\dfrac{-2}{2x-2}}\)
2)\(\sqrt{\dfrac{2}{3x-1}}\)
3)\(\sqrt{\dfrac{2x-2}{-2}}\)
4)\(\sqrt{\dfrac{3x-2}{5}}\)
5)\(\sqrt{\dfrac{x-2}{x+3}}\)
1: ĐKXĐ: -2/2x-2>=0
=>2x-2<0
=>x<1
2: ĐKXĐ: 2/3x-1>=0
=>3x-1>0
=>x>1/3
3: ĐKXĐ: 2x-2/(-2)>=0
=>2x-2<=0
=>x<=1
4: ĐKXĐ: (3x-2)/5>=0
=>3x-2>=0
=>x>=2/3
5: ĐKXĐ: (x-2)/(x+3)>=0
=>x>=2 hoặc x<-3
Cho hai căn thức \(\sqrt{2x^2-4x+5}\) và \(\sqrt{2x^2+4x+2}\)
a, Cmr: Hai căn thức xác định với mọi x
b, Tìm giá trị của x để \(\sqrt{2x^2-4x+5}\) > \(\sqrt{2x^2+4x+2}\)
Giúp mình nha mọi người !
a: \(2x^2-4x+5=2\left(x^2-2x+1+\dfrac{3}{2}\right)=2\left(x-1\right)^2+3>0\forall x\)
\(2x^2+4x+2=2\left(x+1\right)^2>=0\forall x\)
Do đó: Hai căn thức xác định với mọi x
b: \(\Leftrightarrow-4x+5>4x+2\)
=>-8x>-3
=>x<3/8