Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 11:25

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 9 2019 lúc 10:08

Giải bài 6 trang 126 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 6 trang 126 sgk Hình học 11 | Để học tốt Toán 11

Gọi I là tâm hình vuông BCC'B'

Trong mặt phẳng (BC'D') vẽ IK ⊥ BD' tại K

Ta có IK là đường vuông góc chung của BD' và B'C

b) Gọi O là trung điểm của BD'

Tam giác BC’D’ có OI là đường trung bình nên :

Giải bài 6 trang 126 sgk Hình học 11 | Để học tốt Toán 11

Vì ΔIOB vuông tại I có đường cao IK nên:

Giải bài 6 trang 126 sgk Hình học 11 | Để học tốt Toán 11

Khánh vân
Xem chi tiết
nắng Mộtmàu_
Xem chi tiết
Gấuu
10 tháng 8 2023 lúc 23:40

\(\overrightarrow{DM}.\overrightarrow{A'N}=\left(\overrightarrow{DA}+\overrightarrow{AM}\right)\left(\overrightarrow{A'B'}+\overrightarrow{B'N}\right)\)

\(=\overrightarrow{DA}.\overrightarrow{A'B'}+\overrightarrow{AM}.\overrightarrow{A'B'}+\overrightarrow{DA}.\overrightarrow{B'N}+\overrightarrow{AM}.\overrightarrow{B'N}\)

( chứng minh được \(DA\perp A'B',AM\perp B'N\) )

\(=0+\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{C'B'}.\left(-\dfrac{1}{2}\overrightarrow{C'B'}\right)+0\)

\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}C'B'^2=0\)

Suy ra \(DM\perp A'N\)

Ý A

Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 23:42

Chọn A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 1 2019 lúc 6:53

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2018 lúc 16:33

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2017 lúc 5:48

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 9 2018 lúc 13:53

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 6 2017 lúc 17:03

Đáp án là D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 9 2017 lúc 11:09

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta xác định thiết diện của hình lập phương cắt bởi các mặt phẳng sau:

- Mặt phẳng (EFB): ta vẽ FG //AB và được thiết diện là hình chữ nhật ABGF, G là trung điểm của CC'.

- (h.2.67) Mặt phẳng (EFC): Nối FC và vẽ EG // FC, ta được thiết diện là hình thang ECFG

Giải sách bài tập Toán 11 | Giải sbt Toán 11

- (h.2.68) Mặt phẳng (EFC'): Nối FC' và vẽ EG // FC′. Nối GC' và vẽ FH // GC′. Ta được thiết diện là hình ngũ giác EGC'FH.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 

- (h.2.69) Mặt phẳng (EFK) với K là trung điểm của đoạn B'C'. Lấy trung điểm E' của đoạn A'B'. Ta có I = EF ∩ E′D. Ta có IK là giao tuyến của hai mặt phẳng (EFK) và (A'B'C'D'). Gọi G = IK ∩ C′D′. Nối F với G, vẽ EH // FG. Nối K với H, vẽ FL // KH và nối L với E. Ta được thiết diện là hình lục giác đều EHKGFL. (G, H, L theo thứ tự là trung điểm của D'C', B'B, AD).