Cho tam giác DEF có góc D=2E,E=3F.Tính mỗi góc của tam giác.
cho tam giác DEF có góc D=E=2F. Tính mỗi góc của tam giác
Ta có: \(\widehat{D}+\widehat{E}+\widehat{F}=180^o\)
\(\Rightarrow2\widehat{F}+2\widehat{F}+\widehat{F}=180^o\)
\(\Rightarrow5\widehat{F}=180^o\Rightarrow\widehat{F}=36^o\)
\(\widehat{E}=\widehat{D}=2\widehat{F}=36^o.2=72^o\)
Cho tam giác ABC = tam giác DEF. Biết góc A + B = 130 độ, góc E = 50 độ. Tính mỗi góc của tam giác DEF.
góc B= D rồi, sử dụng tổng 3 góc 1 tam giác
tích đúng cho mình nhé
Cho tam giác DEF vuông tại D. Tính góc E,F biết
\(\dfrac{3}{2}\cos^2E+3\cos^2F=2\)
Ta có : \(cosF=sinE\Rightarrow3cos^2F=3sin^2E\)
Nên giả thiết trở thành :
\(\dfrac{3}{2}cos^2E+3sin^2E=2\)
\(\Leftrightarrow3cos^2E+6sin^2E=4\)
Mặt khác ta lại có : \(cos^2E+sin^2E=1\)
Từ đó ta tính được : \(cosE=\sqrt{\dfrac{2}{3}},sinE=\dfrac{1}{\sqrt{3}}\)
Từ đây ấn máy tính dễ dàng tình được các góc lần lượt :
\(\widehat{E}=35,26^o;\widehat{F}=54,74^o\)
\(E+F=90^0\Rightarrow cosF=sinE\)
\(\Rightarrow\dfrac{3}{2}cos^2E+3sin^2E=2\)
\(\Leftrightarrow\dfrac{3}{2}\left(cos^2E+sin^2E\right)+\dfrac{3}{2}sin^2E=2\)
\(\Leftrightarrow\dfrac{3}{2}+\dfrac{3}{2}sin^2E=2\)
\(\Leftrightarrow sinE=\dfrac{1}{\sqrt{3}}\)
\(\Rightarrow E\approx35^016'\)
a> ta có : góc E = góc F = 400 ( vì tam giác DEF cân tại D)
Tam giác DEF có : góc D+ góc E + góc F = 1800
góc D + 400 +400 = 1800
\(\Rightarrow\)góc D = 1800 - 400-400= 1000
b> Xét tam giác DEM và tam giác DFM có:
AM : cạnh chung
EDM = FDM( vì DM là phân giác của góc D)
DE=DF ( vì tam giác DEF cân tại D)
Do đó : tam giác DEM = tam giác DFM ( c.g.c)
a) Xét tam giác DEF cân tại D có:
∠E=∠F= 40°(Tính chất của tam giác cân)
Ta có : ∠D+∠E+∠F=180°( Tổng 3 góc của 1 tam giác)
=>∠A+40°+40°=180°
∠A=180°-(40°+40°)
=> ∠A =100°
b)
GT: ΔDEF cân tại D
DM là tia phân giác góc D
KL: ΔDEM=ΔDFM
Chứng minh:
Xét ΔDEM và ΔDFM có:
DM (cạnh chung)
∠D1=∠D2
DE=DF (ΔDEF cân )
=>ΔDEM = ΔDFM (c.g.c)
Cho tam giác DEF có góc E = 70 độ , góc D = 60 độ , EF = 30cm . Tính chu vi và diện tích của tam giác DEF
Cho tam giác DEF có góc E = 70 độ , góc D = 60 độ , EF = 30cm . Tính chu vi và diện tích của tam giác DEF
bạn tự vẽ hình giúp mik nha
vẽ đường cao EH (H\(\in\)DF)
ta có: \(\widehat{F}\)=180\(^o\)-\(\widehat{E}\)-\(\widehat{F}\)=180-70-60=50
EH=EF.sinF=30.sin50=22,98
sinD=\(\dfrac{EH}{ED}\)\(\Rightarrow\)ED=\(\dfrac{EH}{sinD}\)=\(\dfrac{22,98}{sin60}\)=26,54
DH=\(\sqrt{DE^2-EH^2}\)(pytago)=\(\sqrt{26,54^2-22,98^2}\)=13,28
HF=\(\sqrt{EF^2-EH^2}\)(pytago)=\(\sqrt{30^2-22,98^2}\)=19,29
mà:DF=DH+HF=13,28+19,29=32,57
chu vi \(_{\Delta DEF}\)=DE+EF+DF=26,54+30+32,57=89,11
\(S_{\Delta DEF}\)=\(\dfrac{EH.DF}{2}\)=\(\dfrac{22,98.32,57}{2}\)=374,2293
Cho tam giác DEF có góc E = 70 độ , góc D = 60 độ , EF = 30cm . Tính chu vi và diện tích của tam giác DEF
Cho tam giác DEF có góc D =30 độ , góc F = 80 độ . Vẽ góc ngoài đỉnh E của tam giác DEF .Tính các góc trên hình
d=30 độ ;f=80độ ; DEF=70 độ ;góc ngoài đỉnh E = 110 độ
Cho tam giác DEF vuông tại D có góc F bằng 55 độ
a) Tính góc E . So sánh các cạnh của tam giác DEF?
b) Vẽ phân giác EH của tam giác DEF . Lấy điểm K trên cạnh EF sao cho DE = EK . Chứng minh tam giác EDH = tam giác EKH và DKH cân
c) Vẽ một đường thẩng a bất kì đi qua D .Trên cạnh DE lấy điểm I sao cho DF = DI . Kẻ FN và IM vuông góc với đường thẳng a . Chứng minh FN mũ 2 + IM mũ 2 = IF mũ 2 - ID mũ 2
Giusp em câu c thôi ạ
a: \(\widehat{E}=35^0\)
Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
\(\widehat{DEH}=\widehat{KEH}\)
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
hay ΔHDK cân tại H
a: ˆE=350E^=350
Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
ˆDEH=ˆKEHDEH^=KEH^
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK