(d):y=3x+2m+2
Tìm m để (d) cắt (d'):y=12x+4 tại điểm A nằm ở góc phần tư thứ nhất
cho hàm số y=(m-1)x+2m+3(d) hỏi tìm m để (d) cắt đường thẳng y=2x+1 tại một điểm thuộc góc phần tư thứ 1
Phương trình hoành độ giao điểm là:
\(\left(m-1\right)x+2m+3=2x+1\)
=>\(\left(m-1\right)x-2x=1-2m-3\)
=>\(x\left(m-3\right)=-2m-2\)
=>\(x=\dfrac{-2m-2}{m-3}\)
\(y=2x+1=\dfrac{2\cdot\left(-2m-2\right)}{m-3}+1=\dfrac{-4m-4+m-3}{m-3}=\dfrac{-3m-7}{m-3}\)
Để (d) cắt đường thẳng y=2x+1 tại một điểm thuộc góc phần tư thứ nhất thì
\(\left\{{}\begin{matrix}m-1\ne2\\\dfrac{-2m-2}{m-3}< 0\\\dfrac{-3m-7}{m-3}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne2\left(5\right)\\\dfrac{m+1}{m-3}>0\left(1\right)\\\dfrac{3m+7}{m-3}< 0\left(2\right)\end{matrix}\right.\)
(1); \(\dfrac{m+1}{m-3}>0\)
TH1: \(\left\{{}\begin{matrix}m+1>0\\m-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-1\\m>3\end{matrix}\right.\)
=>m>3
TH2: \(\left\{{}\begin{matrix}m+1< 0\\m-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -1\\m< 3\end{matrix}\right.\)
=>m<-1
Vậy: \(m\in\left(3;+\infty\right)\cup\left(-\infty;-1\right)\)(3)
(2): \(\dfrac{3m+7}{m-3}< 0\)
TH1: \(\left\{{}\begin{matrix}3m+7>0\\m-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-\dfrac{7}{3}\\m< 3\end{matrix}\right.\)
=>\(\dfrac{-7}{3}< m< 3\)
TH2: \(\left\{{}\begin{matrix}3m+7< 0\\m-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>3\\m< -\dfrac{7}{3}\end{matrix}\right.\)
=>Loại
Vậy: \(-\dfrac{7}{3}< m< 3\)(4)
Từ (3),(4),(5) suy ra \(\left\{{}\begin{matrix}m\ne2\\-\dfrac{7}{3}< m< 3\\m\in\left(3;+\infty\right)\cup\left(-\infty;-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne2\\m\in\left(-\dfrac{7}{3};-1\right)\end{matrix}\right.\)
=>\(m\in\left(-\dfrac{7}{3};-1\right)\)
a. Cho đường thẳng (d): y = x + 1 và đường thẳng (d'): y = 2x - 2m - 1.
Tìm m để đường thẳng (d) và (d') cắt nhau tại 1 điểm nằm trong góc phần tư thứ II (em không biết là thứ 11 hay thứ II nữa thầy cô coi giúp em với ạ). (dạ giải rồi làm phước giúp em giải thích luôn câu in đậm em cảm ơn ạ)
b. Cho phương trình: \(x^2+6x+6m-m^2=0\) (với m là tham số). Tìm m để phương trình đã cho có 2 nghiệm \(x_1;x_2\) thỏa mãn:
\(x_1^3-x_2^3+2x_1^2+12x_1+72=0\)
a.
Pt hoành độ giao điểm (d) và (d'):
\(x+1=2x-2m-1\Leftrightarrow x=2m+2\)
\(\Rightarrow y=x+1=2m+3\)
2 đường thẳng cắt nhau tại 1 điểm nằm trong góc phần tư thứ II khi:
\(\left\{{}\begin{matrix}2m+2< 0\\2m+3>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m>-\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow-\dfrac{3}{2}< m< -1\)
2 trục tung - hoành của hệ trục tọa độ cắt nhau chia mặt phẳng tọa độ làm 4 phần đánh dấu theo thứ tự ngược chiều kim đồng hồ, góc phần tư thứ I là phần tương ứng từ 12 giờ đến 3 giờ (ứng với x;y đều dương), góc phần tư thứ II từ 9 giờ đến 12h ( x âm y dương), góc III từ 6h đến 9h (x;y đều âm), góc IV từ 3h đến 6h (x dương y âm)
b.
\(\Delta'=m^2-6m+9=\left(m-3\right)^2\ge0;\forall m\) nên pt luôn có 2 nghiệm
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\\x_1x_2=6m-m^2\end{matrix}\right.\)
Do \(x_1\) là nghiệm nên \(x_1^2+6x_1+6m-m^2=0\Leftrightarrow2x_1^2+12x_1=2m^2-12m\)
Từ đó:
\(x_1^3-x_2^3+2x_1^2+12x_1+72=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(\left(x_1+x_2\right)^2-x_1x_2\right)+2m^2-12m+72=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(36+m^2-6m\right)+2\left(m^2-6m+36\right)=0\)
\(\Leftrightarrow\left(x_1-x_2+2\right)\left(m^2-6m+36\right)=0\)
Do \(m^2-6m+36=\left(m-3\right)^2+27>0;\forall m\)
\(\Rightarrow x_1-x_2+2=0\)
Kết hợp \(x_1+x_2=-6\) \(\Rightarrow\left\{{}\begin{matrix}x_1-x_2=-2\\x_1+x_2=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-4\\x_2=-2\end{matrix}\right.\)
Thế vào \(x_1x_2=6m-m^2\)
\(\Rightarrow6m-m^2=8\Rightarrow m^2-6m+8=0\Rightarrow\left[{}\begin{matrix}m=2\\m=4\end{matrix}\right.\)
Tìm m để giao điểm của d: m x + 2 y = 5 ; d ’ : y = − 2 x + 1 nằm ở góc phần tư thứ nhất.
A. m = 10
B. m < 10
C. m > 10
D. m = −10
m x + 2 y = 5 ⇒ y = − m 2 x + 5 2
d ∩ d ’ ⇔ − m 2 ≠ − 2 ⇔ m ≠ 4
Xét phương trình hoành độ giao điểm của d và d’
− m 2 x + 5 2 = − 2 x + 1 ⇔ 4 − m 2 x = − 3 2 ⇔ x = 3 m − 4 ⇒ y = − 2 . 3 m − 4 − 1 = m − 10 m − 4
Do d cắt d’ tại điểm nằm ở góc phần tư thứ nhất nên ta có:
x > 0 y > 0 ⇔ 3 m − 4 > 0 m − 10 m − 4 > 0 ⇔ m > 4 m > 10 ⇔ m > 10
Kết hợp điều kiện suy ra m > 10 thỏa mãn yêu cầu đề bài
Đáp án cần chọn là: C
Xác định m để đồ thị hàm số y = (m - 3)x + 2m - 4 và y = -x + 5 cắt nhau tại 1 điểm nằm trong góc phần tư thứ 1
Xét pt hoành độ giao điểm:
(m - 3)x + 2m - 4 = -x + 5
\(\Leftrightarrow\) mx - 3x + 2m - 4 = -x + 5
\(\Leftrightarrow\) m(x + 2) = 2x + 9
\(\Leftrightarrow\) m = \(\dfrac{2x+9}{x+2}\)
Vì 2 đường thẳng cắt nhau tại 1 điểm nằm trong góc phần tư thứ 1
\(\Rightarrow\) x > 0
\(\Leftrightarrow\) 2x + 9 > 9; x + 2 > 2
\(\Rightarrow\) \(\dfrac{2x+9}{x+2}>\dfrac{9}{2}\)
\(\Leftrightarrow\) m \(>\dfrac{9}{2}\)
Vậy \(m>\dfrac{9}{2}\)
Chúc bn học tốt!
Tìm m để y=(2m-3)x+m-5 (d) và \(y=x^2\); y=2x+3 cắt nhau tại điểm thuộc góc phần tư thứ hai
Hoàng độ giao điểm của y= x^2 và y = 2x + 3 là nghiệm phương trình:
x^2 = 2x + 3 <=> x^2 -2x - 3 = 0 <=> x = 3 hoặc x = -1
Vì giao điểm của 3 đồ thị là điểm thuộc góc phần tư thứ 2 => hoành độ giao điệm x < 0
=> x = 3 loại
x = -1 thỏa mãn
Với x = -1 => y = 1
khi đó: 1 = ( 2m - 3) ( -1) + m - 5
<=> 1 = -2m + 3 + m - 5
<=> m = -3
tìm m để d(1):y=mx-1 cắt d(2):y=2x-1 tại 1 điểm nằm trên tia phân giác của phần tư thứ nhất.
dúp mình với gấp lắm tối phải nộp bài òi
Cho 2 đường thẳng (d): x-2y=3m-7
(d'): x+y=2
tìm các giá trị nguyên của m để (d) cắt (d') tại 1 điểm nằm trong góc vuông xOy
mọi người gợi ý cho mình với
Cho hai đường thẳng (d1): y=12x+5-m; (d2): y=3x+3+m. Xác định m để giao điểm của (d1) và (d2) thỏa mãn
a) Nằm trên trục tung
b) Nằm bên trái trục tung
c) Nằm trong góc phần tư thứ hai
Lời giải:
Phương trình hoành độ giao điểm:
\(12x+5-m=3x+3+m\)
\(\Leftrightarrow 9x=2m-2\Leftrightarrow x=\frac{2m-2}{9}\)
Khi đó: \(y=3x+3+m=3.\frac{2m-2}{9}+3+m=\frac{5m+7}{3}\)
Vậy giao điểm của \((d_1); (d_2)\) là \(\left(\frac{2m-2}{9}; \frac{5m+7}{3}\right)\)
a)
Giao điểm nằm trên trục tung nghĩa là hoành độ bằng $0$
\(\Leftrightarrow \frac{2m-2}{9}=0\Rightarrow m=1\)
b)
Giao điểm nằm bên trái trục tung nghĩa là hoành độ âm
\(\Leftrightarrow \frac{2m-2}{9}< 0\Leftrightarrow m< 1\)
c)
Giao điểm nằm ở góc phần tư thứ 2 nghĩa là hoành độ âm, tung độ dương
\(\Leftrightarrow \left\{\begin{matrix} \frac{2m-2}{9}< 0\\ \frac{5m+7}{3}>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m< 1\\ m> -1,4\end{matrix}\right.\)
Trong mặt phẳng tọa độ cho (d) : y = 2x + 3m - 4 ( m là tham số )
a) Tìm m để (d) đi qua A(m2;1)
b) Tìm m để (d) cắt Ox tại điểm có hoành độ lớn hơn 1
c) Tìm m để (d') : y = -3x + 1 - 2m cắt (d) tại K (x;y) nằm trên (O; 1)