phân tích đa thức thành nhân tử:
x^3-19x-30
Phân tích đa thức thành nhân tử :x3-19x+30
phân tích đa thức thành nhân tử
x3-19x-30
phân tích đa thức thành nhân tử:
x^3-y^3+2x^2+2xy
Đa thức này ko phân tích thành nhân tử được
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)
phân tích đa thức thành nhân tử:
x^3 + 27x + (x+3)(x-9)
\(x^3+27x+\left(x+3\right)\left(x-9\right)\)
⇒\(x^3+27x+x^2-6x-27\)
⇒\(x^3+x^2+21x-27\)
Chịu
Sửa đề: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\cdot\left(x-2\right)\left(x+3\right)\)
Phân tích đa thức sau thành nhân tử:
x(y-1)+3(y-1)
`#3107.101107`
`x(y - 1) + 3(y - 1)`
`= (x + 3)(y - 1)`
x(y-1)+3(y-1)
=(y-1)(x+3)
Giải thích: đặt y-1 ra làm chung .... đa thức còn x+3
phân tích đa thức thành nhân tử:x^4+x^3+2x^2-x+3
Sử dụng lược đồ Horner để phân tích đa thức thành nhân tử:
a, \(3x^4-4x^3+1\)
b, \(x^3-19x-30\)
a: \(3x^4-4x^3+1\)
\(=3x^4-3x^3-x^3+1\)
\(=3x^3\left(x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(3x^3-x^2-x-1\right)\)
b: \(x^3-19x-30\)
\(=x^3-4x-15x-30\)
\(=x\left(x-2\right)\left(x+2\right)-15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x-15\right)\)
\(=\left(x+2\right)\cdot\left(x-5\right)\left(x+3\right)\)
Phân tích đa thức thành nhân tử:x-y+cănxy^2-căny^3
\(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)
Phân tích đa thức thành nhân tử:
x-\(\sqrt{x}\)-2
\(x-\sqrt{x}-2\\ =x+\sqrt{x}-2\sqrt{x}-2\\ =\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)\\ =\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)