Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thánh VĂn Troll
Xem chi tiết
Đinh Đức Hùng
1 tháng 2 2017 lúc 16:06

\(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{4}\right)^2=\frac{x^2}{25}=\frac{y^2}{16}\)

Áp dụng TC DTSBN ta có :

\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)

\(\Rightarrow\frac{x^2}{25}=\frac{1}{9}\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{-5}{3};\frac{5}{3}\)

\(\Rightarrow\frac{y^2}{16}=\frac{1}{9}\Rightarrow y^2=\frac{16}{9}\Rightarrow y=\frac{-4}{3};\frac{4}{3}\)

Trần Tấn Phúc
1 tháng 2 2017 lúc 16:33

Ta có 

4x=5y và x2-y2=1

Có \(\frac{x}{5}=\frac{y}{4}\)và x2-y2=1

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{4}=\frac{x^2-y^2}{5^2-4^2}=\frac{1}{9}\)

Suy ra: \(\frac{x^2}{5^2}=\frac{1}{9}\)=>\(x^2=\frac{1}{9}.25=\frac{25}{9}\)=>\(x=\frac{5}{3}or\frac{-5}{3}\)

    Cách tìm y tương tự như vậy

Kq cuối cùng là \(x=\frac{5}{3}or\frac{-5}{3}\)\(y=\frac{4}{3}or\frac{-4}{3}\)

kim taehyung
Xem chi tiết
_nguyendn.vuu
2 tháng 10 2023 lúc 13:47

`#3107.101107`

`4x = 5y => x/5 = y/4`

Đặt `x/5 = y/4 = k`

`=> x = 5k; y = 4k`

Ta có: `x^2 - y^2 = 1`

`=> (5k)^2 - (4k)^2 = 1`

`=> 25k^2 - 16k^2 = 1`

`=> 9k^2 = 1`

`=> k^2 = 1 \div 9`

`=> k^2 = 1/9`

`=> k^2 = (+-1/3)^2`

`=> k = +-1/3`

Với `k = 1/3`

`=> x = 1/3*5 = 5/3; y = 1/3*4 = 4/3`

Với `k = -1/3`

`=> x = -1/3*5 = -5/3; y = -1/3*4 = -4/3.`

Phương Thảo
Xem chi tiết
vu thi yen nhi
Xem chi tiết
hoàng đá thủ
Xem chi tiết
Sahara
29 tháng 3 2023 lúc 20:53

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)

Nguyễn Nam Hiếu 2008
Xem chi tiết
Mai Đại Hùng
Xem chi tiết
meme
2 tháng 9 2023 lúc 17:16

Để tìm cặp số nguyên (x, y) thỏa mãn phương trình x^2 + xy = 6x - 5y - 8, chúng ta có thể sử dụng phương pháp giải đồng dư.

Đầu tiên, ta sẽ chuyển phương trình về dạng tương đương: x^2 + xy - 6x + 5y + 8 = 0.

Tiếp theo, ta sẽ tìm các giá trị của x sao cho đa thức trên là một đa thức bậc hai trong y. Để làm điều này, ta sẽ sử dụng công thức giải đa thức bậc hai:

y = (-b ± √(b^2 - 4ac))/(2a)

Ở đây, a = 1, b = x - 6 và c = x^2 - 5x - 8. Thay các giá trị này vào công thức, ta có:

y = (-(x - 6) ± √((x - 6)^2 - 4(x^2 - 5x - 8)))/(2(1))

y = (-x + 6 ± √(x^2 - 12x + 36 - 4x^2 + 20x + 32))/(2)

y = (-x + 6 ± √(-3x^2 + 8x + 68))/(2)

Bây giờ, ta sẽ kiểm tra các giá trị của x từ -100 đến 100 (hoặc bất kỳ phạm vi nào khác mà bạn muốn) và tìm các giá trị tương ứng của y để xem có cặp số nguyên (x, y) nào thỏa mãn phương trình ban đầu không.

Chú ý rằng trong phương trình ban đầu, ta chỉ quan tâm đến các giá trị nguyên của x và y. Do đó, chúng ta có thể sử dụng một vòng lặp để kiểm tra các giá trị này.

Dưới đây là một ví dụ về mã Python để tìm các cặp số nguyên (x, y) thỏa mãn phương trình:

 for x in range(-100, 101): discriminant = -3*x**2 + 8*x + 68 if discriminant >= 0 and discriminant % 4 == 0: y1 = (-x + 6 + discriminant**0.5) / 2 y2 = (-x + 6 - discriminant**0.5) / 2 if y1.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y1)})") if y2.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y2)})")

Kết quả sẽ hiển thị các cặp số nguyên (x, y) thỏa mãn phương trình ban đầu.

Yeutoanhoc
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 9 2021 lúc 15:40

\(a^2+b^2+6ab+2=2a+3b\Rightarrow\left(a+b\right)^2-3\left(a+b\right)+2=-a\left(4b+1\right)\le0\)

\(\Rightarrow\left(a+b-1\right)\left(a+b-2\right)\le0\Rightarrow1\le a+b\le2\)

\(a^2+b^2+6ab+2=2a+3b\Rightarrow4ab=-\left(a+b\right)^2+2a+3b-2\)

\(-P=\dfrac{6a+5b+4ab+7}{a+b+1}=\dfrac{6a+5a+7-\left(a+b\right)^2+2a+3b-2}{a+b+1}\)

\(=\dfrac{-\left(a+b\right)^2+8\left(a+b\right)+5}{a+b+1}\)

Tới đây có thể giải theo lớp 9 (tách thành tích hoặc bình phương) hoặc làm theo lớp 12 (khảo sát hàm \(f\left(x\right)=\dfrac{-x^2+8x+5}{x+1}\) trên \(\left[1;2\right]\)). Cả 2 việc đều dễ dàng cả

\(-P=6-\dfrac{\left(x-1\right)^2}{x+1}=\dfrac{17}{3}+\dfrac{\left(3x-1\right)\left(2-x\right)}{3\left(x+1\right)}\)

Minhchau Trần
Xem chi tiết
Trên con đường thành côn...
31 tháng 8 2021 lúc 22:14

undefined