Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thanh Tú
Xem chi tiết
D-low_Beatbox
Xem chi tiết
Trúc Giang
10 tháng 7 2021 lúc 15:20

√(x2-6x+11) + √(x2-6x+13) + √(x2-4x+5) = 3+√2 (1)

Có: \(\sqrt{x^2-6x+11}=\sqrt{\left(x-3\right)^2+2}\ge\sqrt{2}\)

(Dấu = xảy ra khi x = 3)

\(\sqrt{x^2-6x+13}=\sqrt{\left(x-3\right)^2+4}\ge\sqrt{4}=2\)

(Dấu = xảy ra khi x = 3)

\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)

(Dấu = xảy ra khi x = 2)

Nhận xét PT (1):

\(VT\ge3+\sqrt{2}\)

\(VP=3+\sqrt{2}\)

Nên: √(x2-6x+11) + √(x2-6x+13) + √(x2-4x+5) = 3+√2 khi: x = 3 và x = 2

=> PT vô nghiệm

 

Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Văn Cường
Xem chi tiết
Không Tên
30 tháng 7 2018 lúc 14:54

Ta có:

\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\)

\(=x^2-6x+13-\left(x^2-6x+10\right)\)

\(=3\)

mà  \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\)

=>   \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\) 

Nguyễn Văn Cường
31 tháng 7 2018 lúc 0:35

Em chưa hiểu ở dòng thứ 3,chị có thể giải thích cho em với được ko ạ

Nguyễn Văn Cường
31 tháng 7 2018 lúc 0:41

À à em hiểu rồi,nhân 2 cái đó lại,cảm ơn chị rất nhiều ạ

OoO Kún Chảnh OoO
Xem chi tiết
Hoàng Anh Tuấn 5a5 thpd
24 tháng 4 2021 lúc 16:11

HACK NAO VAI . ai biet gui di

Khách vãng lai đã xóa
Trịnh Đức Duy
18 tháng 5 2021 lúc 7:43

x=\(\frac{1}{392}\)(729-28\(\sqrt{2}\)+\(\sqrt{1457-56\sqrt{2}}\)

Khách vãng lai đã xóa
Lê Thị Khánh Huyền
Xem chi tiết
Aki Tsuki
13 tháng 11 2018 lúc 23:45

Ta có: \(A\cdot1=\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

=> A = 3

Linh An Trần
Xem chi tiết
Trọng Đào Minh
Xem chi tiết
nguyenthitulinh
Xem chi tiết
alibaba nguyễn
5 tháng 10 2016 lúc 12:07

(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3

=>

\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3