cho tam giác DEF gọi M,N là trung điểm của DE, DF biết MN bằng 10cm . tính DF
Cho tam giác DEF. Gọi M, N lần lượt là trung điểm của DE và DF.
a) Chứng minh: Tứ giác EMNF là hình thang.
b) Tính độ dài MN biết EF= 20cm.
Cho tam giác DEF có M là trung điểm DE và MN//EF.
a) Chứng minh n là trung điểm DF
b) Tính DF biết MN=5 cm
Trả lời:
a, Xét tam giác DEF có:
M là trung điểm DE
MN // EF
=> N là trung điểm EF
b, Sửa đề: Tính EF biết MN = 5cm.
Xét tam giác DEF có:
M là trung điểm DE
N là trung điểm DF
=> MN là đường trung bình của tam giác DEF
=> \(MN=\frac{EF}{2}\Rightarrow EF=2MN=2.5=10\left(cm\right)\)
Cho tam giác DEF, kẻ MN song song với EF (M ∈ DE; N ∈ DF). Biết ME = 10cm; DN = 9cm; DF = 24cm. Tính DM=?
Ta có: \(NF=DF-DN=24-9=15cm\)
Áp dụng định lí Ta-let vào \(\Delta DEF\) có MN//EF: \(\dfrac{DM}{ME}=\dfrac{DN}{NF}\Leftrightarrow\dfrac{DM}{10}=\dfrac{9}{15}\Rightarrow DM=6\left(cm\right)\)
Cho tam giác DEF cân tại D với đường trung tuyến DI
a) CM tam giác DEI = tam giác DFI
b) Cho biết số đo của hai góc DIE và DIF
c) Biết DE=DF=13cm , EF=10cm , hãy tính độ dài đường trung tuyến DI
d) Gọi G là trọng tâm . Tính DG
e) Gọi M là trung điểm của DF . CMR : E,G,M thẳng hàng
Giúp mình câu d , e với ạ
d: Xét ΔDEF có
DI là trung tuyến
G là trọng tâm
=>DG=2/3DI=2/3*12=8cm
e: Xét ΔDEF có
G là trọng tâm
EM là trung tuyến
=>E,G,M thẳng hàng
Cho tam giác DEF có DE=6cm; DF= 8cm và EF=10cm. Vẽ tia phân giác góc E cắt cạnh DF tại M.Trên cạnh EF lấy điểm N sao cho:EN=ED.Đường thẳng MN cắt đường thẳng DE tại I.
a,C/m: tam giác DEF là tam giác vuông.
b,C/m: MN vuông góc vs EF.So sánh DM và MF
c,Gọi P.Q lần lượt là trung điểm của DN và IF.C/m:P,M,Q thẳng hàng.
Giúp tớ gấp nha1!
Cho tam giác DEF có DE=6cm; DF= 8cm và EF=10cm. Vẽ tia phân giác góc E cắt cạnh DF tại M.Trên cạnh EF lấy điểm N sao cho:EN=ED.Đường thẳng MN cắt đường thẳng DE tại I.
a,C/m: tam giác DEF là tam giác vuông.
b,C/m: MN vuông góc vs EF.So sánh DM và MF
c,Gọi P.Q lần lượt là trung điểm của DN và IF.C/m:P,M,Q thẳng hàng.
Giúp tớ gấp nha1!
Cho tam giác DEF có DE=6cm; DF= 8cm và EF=10cm. Vẽ tia phân giác góc E cắt cạnh DF tại M.Trên cạnh EF lấy điểm N sao cho:EN=ED.Đường thẳng MN cắt đường thẳng DE tại I.
a,C/m: tam giác DEF là tam giác vuông.
b,C/m: MN vuông góc vs EF.So sánh DM và MF
c,Gọi P.Q lần lượt là trung điểm của DN và IF.C/m:P,M,Q thẳng hàng.
Giúp tớ gấp nha1!
Hình vẽ tớ có lẽ vẽ hơi chi tiết về phần bằng nhau hay vuông góc nhỉ ???? Nếu không nhìn thấy rõ thì bảo tớ vẽ lại nhé ;)
a)
Theo đề ra, ta có: ED= 6 (cm) => \(ED^2=6^2=36\)
DF=8(cm) => \(DF^2=8^2=64\)
EF=10(cm) => \(EF^2=10^2=100\)
Ta thấy: 100= 36+64 => \(EF^2=DE^2+DF^2\)
=> Tam giác EDF vuông tại D (theo định lý Py-ta-go đảo)
b)
*) Xét \(\Delta EDM\) và \(\Delta ENM\), có:
ED=EN(gt)
\(\widehat{E_1}=\widehat{E_2}\)
Chung EM.
=> \(\Delta EDM=\Delta ENM\left(c.g.c\right)\) ( còn có cách g.c.g nữa )
=> \(\widehat{EDM}=\widehat{ENM}\) và DM=MN mà \(\widehat{EDM}=90^o\)
=> \(\widehat{ENM}=90^o\) => MN vuông góc với EF.
*) Trong tam giác NMF vuông tại N => Góc N là góc lớn nhất trong tam giác đó => MF là cạnh lớn nhất => MF>MN.
Mà MN=DM => MF>DM.
c) Lấy điểm giao nhau của EM và DN là P'
Xét tam giác EDP' và tam giác ENP', ta có:
ED=EN
\(\widehat{E_1}=\widehat{E_2}\)
Chung EP'
=> \(\Delta EDP'=\Delta ENP'\left(c.g.c\right)\)
=> DP'=P'N => P' là trung điểm của đoạn thẳng DN mà P cũng là trung điểm của đoạn thẳng DN nên P và P' trùng nhau.
Đồng thời P và M cùng nằm trên tia phân giác của góc E.(1)
*) Nối điểm E-> Q ( phải nối vì ta chưa chứng minh được Q thuộc tia phân giác góc E ý mà)
Xét tam giác DMI và tam giác NMF.
\(\widehat{D}=\widehat{N}\left(=90^o\right)\)
DM=MN
\(\widehat{M_1}=\widehat{M_2}\) (góc đối đỉnh)
=> \(\Delta DMI=\Delta NMF\left(g.c.g\right)\)
=> DI=NF và ED=EN => DI+DE=FN+FE =>IE=FE
Xét tam giác EQI và tam giác EQF.
IE=FE
Chung EQ
IQ=QF( do Q là trung điểm của IF)
=> \(\Delta EIQ=\Delta EFQ\left(c.c.c\right)\) => \(\widehat{E_1}=\widehat{E_2}\) => Q thuộc tia phân giác của góc E (2)
Từ (1) và (2) => P,M,Q thẳng hàng......
p/s: Nếu cậu thích thì có thể không làm theo dạng xét tam giác mà áp dụng tính chất tia phân giác của góc hay đại loại là thế mà làm .....
Sr về cái hình nha ..... cái hình đánh dấu cái không đáng :p
cho tam giác DEF có DE =9cm , DF = 15 cm , EF = 21 cm . lấy M,N, thuộc DE , DF sao cho DM = 3cm , DN = 5cm
a, chứng minh MN //EF
b, Tính MN
c, kẻ trung tuyến DI của tam giác DEF . DI cắt MN tại K . Chứng minh K là trung điểm MN
Cho tam giác DEF có DI là phân giác của góc D; I thuộc EF, ED=10 cm , DF=6 cm , FI= 4,8 cm.
a) Tính EI
b) Qua I kẻ đường thẳng song song với DF cắt DE tại M. Tính ME;MD;IM
c) Chứng minh: DE/DF = ME/MD
d) Gọi N là trung điểm của DF; DI cắt MN tại K; FM cắt IN tại H.Chứng minh: KH//MI
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{IE}{IF}=\dfrac{DE}{DF}\)
=>\(\dfrac{IE}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>IE=8(cm)
b: Xét ΔEDF có MI//DF
nên \(\dfrac{EM}{ED}=\dfrac{EI}{EF}\)
=>\(\dfrac{EM}{10}=\dfrac{8}{12.8}=\dfrac{5}{8}\)
=>\(EM=\dfrac{50}{8}=6,25\left(cm\right)\)
Ta có: ME+MD=DE
=>MD+6,25=10
=>MD=3,75(cm)
Xét ΔEDF có IM//DF
nên \(\dfrac{IM}{DF}=\dfrac{EI}{EF}\)
=>\(\dfrac{IM}{6}=\dfrac{8}{12,8}=\dfrac{5}{8}\)
=>\(IM=6\cdot\dfrac{5}{8}=3,75\left(cm\right)\)
c: Xét ΔEDF có MI//DF
nên \(\dfrac{ME}{MD}=\dfrac{EI}{IF}\)
mà \(\dfrac{EI}{IF}=\dfrac{DE}{DF}\)
nên \(\dfrac{ME}{MD}=\dfrac{DE}{DF}\)