Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thanh Hằng
Xem chi tiết
Đinh Thanh Hằng
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 11 2021 lúc 10:50

\(\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=4\\4a-2b+c=4\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=2\\2a-b=2\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\\c=0\end{matrix}\right.\\ \Leftrightarrow y=x^2\)

Định Phương
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 12 2021 lúc 16:32

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=3\\a-b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=-4\\a+b+c=-1\\4a+2b+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\a+c=1\\4a+c=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-2\\c=-1\end{matrix}\right.\)

Nguyễn Thế Tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2023 lúc 21:11

(P) có đỉnh I(1;1) và đi qua A(2;3) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=1\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\4a+2b+c=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=-2a\\4a+2\cdot\left(-2a\right)+c=3\\b^2-4ac=-4a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=3\\b=-2a\\4a^2-12a+4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\4a^2-8a=0\\b=-2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=3\\4a\left(a-2\right)=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\\left[{}\begin{matrix}a=0\left(loại\right)\\a=2\left(nhận\right)\end{matrix}\right.\\b=-2\cdot2=-4\end{matrix}\right.\)

=>c=3;a=2;b=-4

=>\(S=3^2+2^2+\left(-4\right)^2=25+4=29\)

=>Chọn C

Nguyễn Trần Khánh Ly
Xem chi tiết
Kim anh
Xem chi tiết
Minh Hồng
13 tháng 5 2022 lúc 15:14

\(A\left(1;3\right)\) thuộc đths \(\Rightarrow a+b+c+1=3\Rightarrow a+b+c=2\)  (1)

\(B\left(-1;4\right)\) thuộc đths \(\Rightarrow-a+b-c+1=4\Rightarrow-a+b-c=3\)  (2) 

Ta có \(y'\left(x\right)=3ax^2+2bx+c\)

\(y'\left(2\right)=0\Rightarrow12a+4b+c=0\)  (3)

Từ (1), (2) và (3) ta được \(a=-\dfrac{19}{22};b=\dfrac{5}{2};c=\dfrac{4}{11}\)

Vậy hàm số đã cho là \(y=-\dfrac{19}{22}x^3+\dfrac{5}{2}x^2+\dfrac{4}{11}x+1\)

Lê Minh Phương
Xem chi tiết
Rin Huỳnh
2 tháng 1 2022 lúc 1:18

y = ax2 + bx + c đạt Max bằng 5 tại x = -2

--> a < 0; \(\dfrac{4ac - b^2}{4a}\) = 5;

\(\dfrac{-b}{2a}\) = -2

--> b = 4a; \(\dfrac{4ac - 16a^2}{4a}\) = 5

--> b = c - 5 = 4a

Đồ thị hàm số đi qua M(1; -1)

--> a + b + c = -1

--> a + 4a + 4a + 5 = -1

<=> 9a = -6

<=> a = \(\dfrac{-2}{3}\) --> b = \(\dfrac{-8}{3}\); c = \(\dfrac{7}{3}\)

--> \(y = \dfrac{-2}{3}x^2\ -\)\(\dfrac{8}{3}x\) + \(\dfrac{7}{3}\)