Bài 2:
a) tìm điều kiện xác định của biểu thức S
b) Rút gọn rồi tính giá trị của biểu thức S tại x=0;1
c) tìm giá trị lớn nhất của biểu thức S
BÀI 3: Cho biểu thức 
a/ Tìm điều kiện xác định của A
b/ Rút gọn biểu thức A.
c/ Tính giá trị của A tại x = 25
a) x lớn hơn hoặc bằng 0 và x khác 1
Rút gọn biểu thức: A = a 2 + 2 a 2 a + 10 + a − 5 a + 50 − 5 a 2 a ( a + 5 ) .
a) Tìm điều kiện xác định của biểu thức A;
b) Rút gọn biểu thức;
c) Tính giá trị của biểu thức tại a = -1
d) Tìm giá trị của a để A = 0.
a) a ≠ 0 , a ≠ − 5
b) Ta có A = a 3 + 4 a 2 − 5 a 2 a ( a + 5 ) = a ( a − 1 ) ( a + 5 ) 2 a ( a + 5 ) = a − 1 2
c) Thay a = -1 (TMĐK) vào a ta được A = -1
d) Ta có A = 0 Û a = 1 (TMĐK)
Bài 2: Cho biểu thức 
a) tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của P khi x=2/5
a) ĐKXĐ: \(x\ne\pm10\)
b) \(P=\left(\dfrac{5x+2}{x-10}+\dfrac{5x-2}{x+10}\right)\cdot\dfrac{x-10}{x^2+4}\left(x\ne\pm10\right)\)
\(=\left[\dfrac{\left(5x+2\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}+\dfrac{\left(5x-2\right)\left(x-10\right)}{\left(x-10\right)\left(x+10\right)}\right]\cdot\dfrac{x-10}{x^2+4}\)
\(=\dfrac{5x^2+52x+20+5x^2-52x+20}{\left(x-10\right)\left(x+10\right)}\cdot\dfrac{x-10}{x^2+4}\)
\(=\dfrac{10x^2+40}{x+10}\cdot\dfrac{1}{x^2+4}\)
\(=\dfrac{10\left(x^2+4\right)}{\left(x+10\right)\left(x^2+4\right)}\)
\(=\dfrac{10}{x+10}\)
c) Thay \(x=\dfrac{2}{5}\) vào \(P\), ta được:
\(P=\dfrac{10}{\dfrac{2}{5}+10}=\dfrac{25}{26}\)
\(\text{#}Toru\)
cho biểu thức A=(2+x/2-x - 4x^2/x^2+4) - 2-x/2+x):(x^2-3x/2x^2-x^3)
a)tìm điều kiện xác định rồi rút gọn biểu thức A
b)tìm giá trị của x để A>0
C)tính giá trị của A khi x thỏa mãn |x-7|=4
a: Sửa đề: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
ĐKXĐ: x∉{0;2;-2;3}
Ta có: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(=\left\lbrack\frac{-\left(x+2\right)}{x-2}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{x+2}\right\rbrack:\frac{x\left(x-3\right)}{x^2\cdot\left(2-x\right)}\)
\(=\frac{-\left(x+2\right)^2-4x^2+\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\frac{x-3}{x\left(2-x\right)}\)
\(=\frac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{-x\left(x-2\right)}{x-3}\)
\(=\frac{-4x^2-8x}{x+2}\cdot\frac{-x}{x-3}=\frac{-4x\left(x+2\right)}{x+2}\cdot\frac{-x}{x-3}=\frac{4x^2}{x-3}\)
b: Để A>0 thì \(\frac{4x^2}{x-3}>0\)
=>x-3>0
=>x>3
c: |x-7|=4
=>\(\left[\begin{array}{l}x-7=4\\ x-7=-4\end{array}\right.\Rightarrow\left[\begin{array}{l}x=11\left(nhận\right)\\ x=3\left(loại\right)\end{array}\right.\)
Thay x=11 vào A, ta được:
\(A=\frac{4\cdot11^2}{11-3}=\frac{4\cdot121}{8}=\frac{121}{2}\)
Cho biểu thức
1 3 1
. 1 1 2
x x x A
x x
1) Tìm điều kiện của x để biểu thức A được xác định. 2) Rút gọn biểu thức A. 3) Tính giá trị của biểu thức A tại x 5. 4) Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
Cho biểu thức
2 1 1
1 . 1
1 1
A x
x x
a) Tìm điều kiện của x để biểu thức A xác định. b) Rút gọn biểu thức A
c) Tính giá trị của A tại x = 3
a. ĐKXĐ: \(x\ne\pm1\)
b. \(A=\left(x^2-1\right)\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right]\)
\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{x+1-x+1-\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right]\)
\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{-x^2+3}{\left(x-1\right)\left(x+1\right)}\right]\)
\(=\dfrac{\left(x-1\right)\left(x+1\right)\left(-x^2+3\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=-x^2+3\)
c. Thay x = 3 vào A ta được:
\(-\left(3\right)^2+3=-6\)
Vậy: Giá trị của A tại x = 3 là -6
a) ĐKXĐ: \(x\ne1;x\ne-1.\)
b) \(A=\left(x^2-1\right).\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}-1\right).\)
\(=\left(x^2-1\right).\dfrac{x+1-x+1-x^2+1}{x^2-1}=-x^2+3.\)
c) Thay x = 3 (TMĐK) vào A: \(-3^2+3=-6.\)
Cho biểu thức: A = x2/x^2-x-4/x-2+ 2/x+2
a) Với điều kiện nào của x thì giá trị của biểu thức A được xác định?
b) Rút gọn biểu thức A.
c) Tìm giá trị của biểu thức A tại x=1.
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
BÀI 8. Cho biểu thức a) Tìm điều kiện của biến x để giá trị của biểu thức xác định. b) Rút gọn B. c) Tính giá trị của B khi x=-3 và x=1. d) Tìm x để .
Cho biểu thức: A=x^2/x^2-4 - x/x-2 - 2/x+2
a) với điều kiện nao của x thì giá trị của biểu thức A được xác định?
b) rút gọn biểu thức A c)Tìm giá trị của biểu thức A tại x=1
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)