Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Loan Tran

Bài 2:loading...
a) tìm điều kiện xác định của biểu thức S
b) Rút gọn rồi tính giá trị của biểu thức S tại x=0;1
c) tìm giá trị lớn nhất của biểu thức S

Toru
22 tháng 12 2023 lúc 19:57

a) ĐKXĐ: \(x\ne0;x\ne-2\)

b) \(S=\dfrac{\left(x+2\right)^2}{x}\cdot\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+6x+4}{x}\)

\(=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{x+2-x^2}{x+2}-\dfrac{x^2+6x+4}{x}\)

\(=\dfrac{\left(x+2\right)\left(x+2-x^2\right)}{x}-\dfrac{x^2+6x+4}{x}\)

\(=\dfrac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)

\(=\dfrac{-x^3-2x^2-2x}{x}\)

\(=\dfrac{x\left(-x^2-2x-2\right)}{x}\)

\(=-x^2-2x-2\)

Với \(x=0\Rightarrow\) loại

Với \(x=1\), thay vào \(S\) ta được

\(S=-1^2-2\cdot1-2=-5\)

c) Có: \(S=-x^2-2x-2\)

\(=-\left(x^2+2x+2\right)\)

\(=-\left(x^2+2x+1\right)-1\)

\(=-\left(x+1\right)^2-1\)

Ta thấy: \(\left(x+1\right)^2\ge0\forall x\ne0;x\ne-2\)

\(\Rightarrow-\left(x+1\right)^2\le0\forall x\ne0;x\ne-2\)

\(\Rightarrow S=-\left(x+1\right)^2-1\le-1\forall x\ne0;x\ne-2\)

Dấu \("="\) xảy ra khi: \(x+1=0\Leftrightarrow x=-1\left(tmdk\right)\)

\(\text{#}\mathit{Toru}\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Hoàng an
Xem chi tiết
Loan Tran
Xem chi tiết
Pham Trong Bach
Xem chi tiết
ngọc nguyễn
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Hoàng an
Xem chi tiết
Lê Cao Phong
Xem chi tiết
Loan Tran
Xem chi tiết