Phân tích đa thức thành nhân tử :
2x^4-6x^3+x^2+6x-3
Phân tích đa thức thành nhân tử: 2x^4+x^3-6x^2+x+2
\(2x^4+x^3-6x^2+x+2\)
= \(2x^4+4x^3-3x^3-6x^2+x+2\)
= \(2x^3\left(x+2\right)-3x^2\left(x+2\right)+\left(x+2\right)\)
= \(\left(x+2\right)\left(2x^3-3x^2+1\right)\)
=\(\left(x+2\right)\left(2x^3-2x^2-x^2+1\right)\)
=\(\left(x+2\right)\left(2x^2\left(x-1\right)-\left(x+1\right)\left(x-1\right)\right)\)
=\(\left(x+2\right)\left(x-1\right)\left(2x^2-x-1\right)\)
= \(\left(x+2\right)\left(x-1\right)\left(2x^2-2x+x-1\right)\)
=\(\left(x+2\right)\left(x-1\right)\left(2x\left(x-1\right)+\left(x-1\right)\right)\)
=\(\left(x+2\right)\left(2x+1\right)\left(x-1\right)^2\)
x^4+2x^3+6x-9 Phân tích đa thức thành nhân tử
\(=x^4-x^3+3x^3-3x^2+3x^2-3x+9x-9\\ =\left(x-1\right)\left(x^3+3x^2+3x+9\right)\\ =\left(x-1\right)\left(x+3\right)\left(x^2+3\right)\)
\(x^4+2x^3+6x-9=x^3\left(x-1\right)+3x^2\left(x-1\right)+3x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+3x+9\right)\)
\(=\left(x-1\right)\left[x^2\left(x+3\right)+3\left(x+3\right)\right]\)
\(=\left(x-1\right)\left(x+3\right)\left(x^2+3\right)\)
\(x^4+2x^3+6x-9=0\)\(\)
\(\Rightarrow x^4+3x^3-x^3+9x-3x-9+3x^2-3x^2=0\)
\(\Rightarrow\left(x^4+3x^3+3x^2+9x\right)-\left(x^3+3x^2+3x+9\right)=0\)
\(\Rightarrow x\left(x^3+3x^2+3x+9\right)-\left(x^3+3x^2+3x+9\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^3+3x^2+3x+9\right)=0\)
\(\Rightarrow\left(x-1\right)\left[x^2\left(x+3\right)+3\left(x+3\right)\right]=0\)
\(\Rightarrow\left(x-1\right)\left(x^2+3\right)\left(x+3\right)=0\)
Mà \(x^2+3>0\) với mọi x\(\in\)R.
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
\(2x^3-x^2-6x\)
\(=x\left(2x^2-x-6\right)\)
\(=x\left(2x^2-4x+3x-6\right)\)
\(=x\left[2x\left(x-2\right)+3\left(x-2\right)\right]\)
\(=x\left(x-2\right)\left(2x+3\right)\)
x(2x^2-x-6)
x(2x^2-4x+3x-6)
x[2x(x-2)+3(x-2)]
x(2x+3)(x-2)
2x^5 - 6x^4 - 2a^2 x^3 - 6ax^3. Phân tích đa thức sau thành nhân tử
2x^5-6x^4-2a^2x^3-6ax^3
=(2x^5-2a^2x^3)-(6x^4+6ax^3)
=2x^3(x^2-a^2)-6x^3(x+a)
=2x^3(x-a)(x+a)-6x^3(x+a)
=(x+a)(2x^4-2x^3a-6x^3)
=(x+a) 2x^3 (x-a-3)
Phân tích đa thức đa thức thành nhân tử
x^4+6x^3+11x^2+6x+1
đặt y=x2+1
=>y2=(x2+1)2
y2=x4+2x2+1
đặt P(x)=x^4+6x^3+11x^2+6x+1
=x4+2x2+1+6x3+6x+9x2
=x4+2x+1+6x(x2+1)+9x2
thay y2=x4+2x2+1 và y=x2+1 ta được
Q(y)=y2+6xy+9x2
=(y+3x)2
thay y=x2+1 ta được:
(x2+3x+1)2
vậy x^4+6x^3+11x^2+6x+1=(x2+3x+1)2
phân tích đa thức thành nhân tử:
-2x^5-6x^4-8x^3-x^2+7x+10
Phân tích đa thức thành nhân tử
\(e)x^3-x^2+x+3\)
\(f)2x^3-35x-75\)
\(g)3x^3-4x^2+13x-4\)
\(h)6x^3+x^2+x+1\)
\(i)4x^3+6x^2+4x+1\)
phân tích đa thức thành nhân tử : x^4+6x^3+7x^2-6x+1
\(x^4+6x^3+7x^2-6x+1\)
\(=x^4+6x^3+9x^2-2x^2-6x+1\)
\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2-2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x\right)^2-2\left(x^2+3x\right).1+1^2\)
\(=\left(x^2+3x-1\right)^2\)
Chúc bạn học tốt.
\(x^4+6x^3+7x^2-6x+1\)
\(=x^4+6x^3+9x^2-2x^2-6x+1\)
\(=x^2\left(x+3\right)^2-2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x\right)^2-2\left(x^2+3x\right)+1=\left(x^2+3x-1\right)^2\)
https://olm.vn/hoi-dap/tim-kiem?q=Cho+%CE%94ABC+vu%C3%B4ng+t%E1%BA%A1i+A+c%C3%B3+AB+%3E+AC,+M+l%C3%A0+%C4%91i%E1%BB%83m+tu%E1%BB%B3+%C3%BD+tr%C3%AAn+BC.+Qua+M+k%E1%BA%BB+Mx+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC+v%C3%A0+c%E1%BA%AFt+AB+t%E1%BA%A1i+I+c%E1%BA%AFt+CA+t%E1%BA%A1i+D.a.+Ch%E1%BB%A9ng+minh+%CE%94ABC+%C4%91%E1%BB%93ng+d%E1%BA%A1ng+v%E1%BB%9Bi+%CE%94MDCb.+Ch%E1%BB%A9ng+minh:+BI.BA+=+BM.BCc.+Cho+g%C3%B3c+ACB+=+60o+v%C3%A0+S%CE%94CDB+=+60+cm2.+T%C3%ADnh+S%CE%94CMAGi%C3%BAp+m%C3%ACnh+c%C3%A2u+c+v%E1%BB%9Bi&id=573451
Phân tích đa thức thành nhân tử: 1, x^3+2x^2-6x-27 2, 9x^2+6x-4y^2-4y 3, 12x^3+4x^2-27x-9
1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)
2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)
3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)
1) Ta có: \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
2: Ta có: \(9x^2+6x-4y^2-4y\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(3x+2y+2\right)\)