Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng văn tiến
Xem chi tiết
Akai Haruma
20 tháng 12 2023 lúc 16:31

Bạn nên ghi đầy đủ đề (bao gồm yêu cầu cũng như điều kiện về x) để mọi người hỗ trợ tốt hơn.

Hoàng văn tiến
Xem chi tiết
Akai Haruma
27 tháng 11 2023 lúc 19:34

Lời giải:

$x^2+55=4y^2$

$4y^2-x^2=55$
$(2y-x)(2y+x)=55$

Vì $x,y$ là số tự nhiên nên $2y+x, 2y-x$ là số nguyên và $2y+x>0$.

Mà $(2y-x)(2y+x)=55>0$ nên $2y-x>0$

Kết hợp với $2y+x\geq 2y-x$ ta có các TH sau:

TH1: $2y-x=1; 2y+x=55\Rightarrow y=14; x=27$

TH2: $2y-x=5; 2y+x=11\Rightarrow y=4; x=3$

Đặng Thu Phương
Xem chi tiết
Akai Haruma
18 tháng 12 2023 lúc 21:44

Lời giải:

$x^2+55=4y^2$

$\Leftrightarrow 55=4y^2-x^2=(2y-x)(2y+x)$

Do $x,y$ là stn nên $2y+x$ là stn. 

$\Rightarrow 2y+x>0$. Mà $(2y+x)(2y-x)=55>0$ nên $2y-x>0$.

Vậy $2y+x> 2y-x>0$.

Khi đó ta có các TH sau:

TH1: $2y-x=1, 2y+x=55\Rightarrow y=14; x=27$ (tm) 

TH2: $2y-x=5; 2y+x=11\Rightarrow y=4; x=3$ (tm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2019 lúc 18:30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2019 lúc 13:19

Đáp án là C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 4 2019 lúc 13:02

Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 13:53

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 12 2019 lúc 5:55

Chọn: A

Tô Mì
Xem chi tiết