Tìm x :
16x + 20x + 24x + .............. + 40x + 44x = 4800
Đa thức 16x^3y^2 - 24x^2y^3 +20x^4 chia hết cho đơn thức nào dưới đây: A. 4 x^2y^2 B. - 4x^3y C. 16x^2 D. - 2x^3y^2
không có đáp án nào chính xác
mình nghĩ thế thôi
Lời giải:
$16x^3y^2-24x^2y^3+20x^4=16x^2(xy^2-\frac{3}{2}y^3+\frac{5}{4}x^2)$
$\Rightarrow 16x^3y^2-24x^2y^3+20x^4\vdots 16x^2$
Đáp án C.
Tìm x
a)(x+12)^2-9x^2=0
b)20x^3-15x^2+7x=45-38x
c)16x^4-40x^3+10x^2=80x^3-20x^2+196x
d)-4.(x-7)+11x=-x+3.(x+5)
e)4x.(x^2-3)+x=4x^3-3x+5
a: \(\Leftrightarrow\left(x+12-3x\right)\left(x+12+3x\right)=0\)
=>(-2x+12)(4x+12)=0
=>x=-3 hoặc x=6
b: \(\Leftrightarrow20x^3-15x^2+45x-45=0\)
=>\(x\simeq0.93\)
d: =>-4x+28+11x=-x+3x+15
=>7x+28=2x+15
=>5x=-13
=>x=-13/5
e: \(\Leftrightarrow4x^3-12x+x=4x^3-3x+5\)
=>-9x=-3x+5
=>-6x=5
=>x=-5/6
Giải phương trình
a, x4 + 5x3 + 12x2 +20x + 16 = 0
b, 16x4 - 24x3 + 16x2 - 6x + 1 = 0
Tìm GTNN hoặc GTLN :
a. A = 9x\(^2\) - 30x + 30
b. \(B=16x^2-24x-3\)
c. \(C=4x^2+40x-2\)
d. \(D=36x^2-24x+7\)
a) \(A=9x^2-30x+30\)
\(A=\left(3x\right)^2-2\cdot3x\cdot5+5^2+5\)
\(A=\left(3x-5\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{3}\)
b) \(B=16x^2-24x-3\)
\(B=\left(4x\right)^2-2\cdot4x\cdot3+3^2-13\)
\(B=\left(4x-3\right)^2-13\ge-13\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)
c) \(C=4x^2+40x-2\)
\(C=\left(2x\right)^2+2\cdot2x\cdot10+10^2-102\)
\(C=\left(2x+10\right)^2-102\ge-102\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Giải pt \(x^4-16x^3+44x^2-12=0\)
\(\Leftrightarrow\left(x^2-12x-6\right)\left(x^2-4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-12x-6=0\\x^2-4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-6\right)^2=42\\\left(x-2\right)^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6\in\left\{\sqrt{42};-\sqrt{42}\right\}\\x-2\in\left\{\sqrt{2};-\sqrt{2}\right\}\end{matrix}\right.\Leftrightarrow x\in\left\{\sqrt{42}+6;-\sqrt{42}+6;\sqrt{2}+2;2-\sqrt{2}\right\}\)
Lên lớp trên mà gửi đi gửi ở lớp 1 làm gì vậy bạn .
Tìm x:
20x2+24x+18=500
\(20x^2+24x+18=500\)
\(20x^2+24x-482=0\)
\(10x^2+12x-241=0\)
\(\orbr{\begin{cases}x=\frac{-6+\sqrt{2446}}{10}\\x=\frac{-6-\sqrt{2446}}{10}\end{cases}}\)
20x2 + 24x + 18 = 500
<=> 20x2 + 24x + 18 - 500 = 0
<=> 20x2 + 24x - 482 = 0
<=> 2( 10x2 + 12x - 241 ) = 0
<=> 10x2 + 12x - 241 = 0 (*)
\(\Delta'=b'^2-ac=\left(\frac{b}{2}\right)^2-ac=6^2-10\cdot\left(-241\right)=36+2410=2446\)
\(\Delta'>0\)nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-6+\sqrt{2446}}{10}\\x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-6-\sqrt{2446}}{10}\end{cases}}\)
Lớp 8 sao nghiệm xấu thế nhỉ ;-;
Ta có: \(20x^2+24x+18=500\)
\(\Leftrightarrow20x^2+24x-482=0\)
\(\Leftrightarrow100x^2+120x-2410=0\)
\(\Leftrightarrow\left(100x^2+120x+36\right)-2446=0\)
\(\Leftrightarrow\left(10x+6\right)^2=2446\)
\(\Leftrightarrow10x+6=\pm\sqrt{2446}\)
+ \(10x+6=\sqrt{2446}\)\(\Leftrightarrow x=\frac{\sqrt{2446}-6}{10}\approx4,345705208\)
+ \(10x+6=-\sqrt{2446}\)\(\Leftrightarrow x=\frac{-\sqrt{2446}-6}{10}\approx-5,545705208\)
Vậy \(S=\left\{4,345705208;-545705208\right\}\)
Tìm giá trị nhỏ nhất của A=16x2+24x-5
tìm GTLN của A=-x2-8x+20
B=-16x2+24x-5
x +20x x+10x x+40x x+30=205000 giải giúp mình nhé
\(x+20\times x+10\times x+40\times x+30=205000\)
\(x\times\left(1+20+10+40\right)+30=205000\)
\(x\times71+30=205000\)
\(x\times71=205000-30\)
\(x\times71=204970\)
\(x=204970:71\)
\(x=\frac{204970}{71}\)
a) \(4x^2+16x+3=0\)
\(\Delta'=84-12=72\Rightarrow\sqrt[]{\Delta'}=6\sqrt[]{2}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+6\sqrt[]{2}}{4}\\x=\dfrac{-8-6\sqrt[]{2}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\left(4-3\sqrt[]{2}\right)}{4}\\x=\dfrac{-2\left(4+3\sqrt[]{2}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(4-3\sqrt[]{2}\right)}{2}\\x=\dfrac{-\left(4+3\sqrt[]{2}\right)}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt[]{2}-4}{2}\\x=\dfrac{-3\sqrt[]{2}-4}{2}\end{matrix}\right.\)
b) \(7x^2+16x+2=1+3x^2\)
\(4x^2+16x+1=0\)
\(\Delta'=84-4=80\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{5}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+4\sqrt[]{5}}{4}\\x=\dfrac{-8-4\sqrt[]{5}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\left(2-\sqrt[]{5}\right)}{4}\\x=\dfrac{-4\left(2+\sqrt[]{5}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\left(2-\sqrt[]{5}\right)\\x=-\left(2+\sqrt[]{5}\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt[]{5}\\x=-2-\sqrt[]{5}\end{matrix}\right.\)
c) \(4x^2+20x+4=0\)
\(\Leftrightarrow4\left(x^2+5x+1\right)=0\)
\(\Leftrightarrow x^2+5x+1=0\)
\(\Delta=25-4=21\Rightarrow\sqrt[]{\Delta}=\sqrt[]{21}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-5+\sqrt[]{21}}{2}\\x=\dfrac{-5-\sqrt[]{21}}{2}\end{matrix}\right.\)