Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vu Ngoc Hong Chau
Xem chi tiết
Hồ Quỳnh Thơ
Xem chi tiết
Ashshin HTN
6 tháng 7 2018 lúc 15:05

tích đúng mình làm cho

Hồ Quỳnh Thơ
6 tháng 7 2018 lúc 15:08

bạn giải giùm với ạk

Kiên-Messi-8A-Boy2k6
6 tháng 7 2018 lúc 15:09

Ta có: \(VP=\left(a-b\right)\left(a-b\right)+4ab\)

\(=a^2-2ab-b^2+4ab\)

\(=a^2-b^2+2ab=\left(a+b\right)^2=VT\left(đpcm\right)\)

b, \(VP=\left(a+b\right)\left(a+b\right)-4ab\)

\(=a^2+2ab+b^2-4ab\)

\(=a^2+b^2-2ab=\left(a-b\right)^2=VT\left(đpcm\right)\)

lethienduc
Xem chi tiết
Mai Trung Nguyên
4 tháng 3 2020 lúc 15:21

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

Khách vãng lai đã xóa
tth_new
6 tháng 4 2020 lúc 9:31

Đặt . Do đó . Cần chứng minh:

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq  \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2}  $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right)  \left( 256\, \left( 1/4-xy \right) ^{3}+64\,
 \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.

Khách vãng lai đã xóa
Nguyễn Trung Kiên
6 tháng 4 2020 lúc 16:30

eos bieets

Khách vãng lai đã xóa
Lê Đình Quân
Xem chi tiết
Nguyễn Dương Thùy Linh
Xem chi tiết
Phan Văn Hiếu
18 tháng 7 2016 lúc 16:55

ban su dung hang dang thuc la ra

GPSgaming
Xem chi tiết
TFboys_Lê Phương Thảo
13 tháng 12 2016 lúc 8:04

(a+b)^2-(a-b)^2=4ab

a^2+2ab+b^2-a^2+2ab-b^2=4ab

a^2+2ab+b^2-a^2+2ab-b^2-4ab=0

a^2-a^2+2ab+2ab-4ab+b^2-b^2=0

0=0

=>dpcm

Trần Việt Linh
13 tháng 12 2016 lúc 6:27

Biến đổi vế trái ta có:

\(\left(a+b\right)^2-\left(a-b\right)^2=a^2+2ab+b^2-a^2+2ab-b^2=4ab=VP\)

=>đpcm

Yeji
Xem chi tiết
Nguyễn Văn Tuấn Anh
10 tháng 8 2019 lúc 15:38

\(1.\)

\(a,\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)

๖²⁴ʱƘ-ƔℌŤ༉
10 tháng 8 2019 lúc 15:44

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)

b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)

♥ Aoko ♥
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tuyết Nhi Melody
20 tháng 4 2017 lúc 21:39

Bài giải:

a) (a + b)2 = (a – b)2 + 4ab

- Biến đổi vế trái:

(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab

= (a – b)2 + 4ab

Vậy (a + b)2 = (a – b)2 + 4ab

- Hoặc biến đổi vế phải:

(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2

= (a + b)2

Vậy (a + b)2 = (a – b)2 + 4ab

b) (a – b)2 = (a + b)2 – 4ab

Biến đổi vế phải:

(a + b)2 – 4ab = a2 +2ab + b2 – 4ab

= a2 – 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng: Tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412

Nguyễn Trà My
13 tháng 7 2017 lúc 8:44

CMR: (a + b)2 = (a - b)2 + 4ab

(a - b)2 = (a + b)2 - 4ab

Ta có: (a + b)2 = a2 + 2ab + b2

= a2 +2ab + b2 - 2ab +2ab

= a2 - 2ab + b2 + 2ab +2ab

= (a - b)2 +4ab

Ta có: (a - b)2 = a2 - 2ab + b2

= a2 - 2ab + b2 + 2ab - 2ab

= a2 + 2ab + b2 - 2ab - 2ab

= (a + b)2 - 4ab

Áp dụng:

a) Tính (a - b)2 , biết a + b = 7 và a.b = 12

Ta có: (a - b)2 = (a + b)2 - 4ab

= 72 - 4.12

= 49 - 48

Vậy (a - b)2 = 1

b) Tính (a + b)2 , biết a - b = 7 và a.b = 3

Ta có: (a + b)2 = (a - b)2 + 4ab

= 72 + 4.3

= 49 + 12

Vậy ( a + b)2 = 61

Lưu Ngọc Hải Đông
13 tháng 7 2017 lúc 9:31

\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)

\(a^2-2ab+b^2=\left(a-b\right)^2\)

Áp dụng

a)\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

\(=7^2-4.12=49-48=1\)

b) \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

\(=7^2+4.3=49+12=61\)