Chứng Minh rằng
\(\left(a+b\right)^2\)=\(\left(a-b\right)^2\)+4ab
chứng minh rằng
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Chứng minh rằng
a) ( a + b ) = \(\left(a-b\right)^2\)+ 4ab
b) \(\left(a-b\right)^2\)= \(\left(a+b\right)^2\)- 4ab
Ta có: \(VP=\left(a-b\right)\left(a-b\right)+4ab\)
\(=a^2-2ab-b^2+4ab\)
\(=a^2-b^2+2ab=\left(a+b\right)^2=VT\left(đpcm\right)\)
b, \(VP=\left(a+b\right)\left(a+b\right)-4ab\)
\(=a^2+2ab+b^2-4ab\)
\(=a^2+b^2-2ab=\left(a-b\right)^2=VT\left(đpcm\right)\)
cho các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}=1\)
Chứng minh rằng \(3\left(a+b\right)^2-\left(a+b\right)+4ab\ge\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\)
\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)
=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)
Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^
Đặt . Do đó . Cần chứng minh:
Or
Bình phương 2 vế và xét hiệu, ta cần chứng minh:
Đó là điều hiển nhiên vì:
Done.
cho các số thực dương a,b thỏa mãn \(\sqrt{a}+\sqrt{b}=1\)
Chứng minh rằng \(3\left(a+b\right)^2-\left(a+b\right)+4ab\ge\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\)
Chứng minh rằng:
a)\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b)\(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-b^3\)
c)\(\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
Chứng minh :
\(\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
(a+b)^2-(a-b)^2=4ab
a^2+2ab+b^2-a^2+2ab-b^2=4ab
a^2+2ab+b^2-a^2+2ab-b^2-4ab=0
a^2-a^2+2ab+2ab-4ab+b^2-b^2=0
0=0
=>dpcm
Biến đổi vế trái ta có:
\(\left(a+b\right)^2-\left(a-b\right)^2=a^2+2ab+b^2-a^2+2ab-b^2=4ab=VP\)
=>đpcm
1. CHỨNG MINH RẰNG
a) \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
b) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
c) \(\left(a^2+b^2\right).\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(ay+bx\right)^2\)
2. CHỨNG MINH RẰNG : a = b = c KHI
\(\left(a+b+c\right)^2=3\left(ab+ac+bc\right)\)
3. CHO a + b + c = 0 VÀ \(a^2+b^2+c^2=1\)
Tính \(M=a^4+b^4+c^4\)
4. CHỨNG MINH RẰNG GIÁ TRỊ CÁC BIỂU THỨC SAU LUÔN LUÔN DƯƠNG
a) \(x^2+x+1\)
b) \(x^2-x+\frac{1}{2}\)
\(1.\)
\(a,\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)
b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)
Cho 2 số nguyên dương lẻ a,b nguyên tố cùng nhau thỏa mãn \(\left(a^2+2\right)⋮b\) và\(\left(b^2+2\right)⋮a\). Chứng minh rằng \(\left(a^2+b^2+2\right)⋮4ab\)
Chứng minh rằng :
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Áp dụng :
a) Tính \(\left(a-b\right)^2\), biết \(a+b=7\) và \(a.b=12\)
b) Tính \(\left(a+b\right)^2\), biết \(a-b=7\) và \(a.b=3\)
Bài giải:
a) (a + b)2 = (a – b)2 + 4ab
- Biến đổi vế trái:
(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab
= (a – b)2 + 4ab
Vậy (a + b)2 = (a – b)2 + 4ab
- Hoặc biến đổi vế phải:
(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2
= (a + b)2
Vậy (a + b)2 = (a – b)2 + 4ab
b) (a – b)2 = (a + b)2 – 4ab
Biến đổi vế phải:
(a + b)2 – 4ab = a2 +2ab + b2 – 4ab
= a2 – 2ab + b2 = (a – b)2
Vậy (a – b)2 = (a + b)2 – 4ab
Áp dụng: Tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412
CMR: (a + b)2 = (a - b)2 + 4ab
(a - b)2 = (a + b)2 - 4ab
Ta có: (a + b)2 = a2 + 2ab + b2
= a2 +2ab + b2 - 2ab +2ab
= a2 - 2ab + b2 + 2ab +2ab
= (a - b)2 +4ab
Ta có: (a - b)2 = a2 - 2ab + b2
= a2 - 2ab + b2 + 2ab - 2ab
= a2 + 2ab + b2 - 2ab - 2ab
= (a + b)2 - 4ab
Áp dụng:
a) Tính (a - b)2 , biết a + b = 7 và a.b = 12
Ta có: (a - b)2 = (a + b)2 - 4ab
= 72 - 4.12
= 49 - 48
Vậy (a - b)2 = 1
b) Tính (a + b)2 , biết a - b = 7 và a.b = 3
Ta có: (a + b)2 = (a - b)2 + 4ab
= 72 + 4.3
= 49 + 12
Vậy ( a + b)2 = 61
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)
\(a^2-2ab+b^2=\left(a-b\right)^2\)
Áp dụng
a)\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(=7^2-4.12=49-48=1\)
b) \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(=7^2+4.3=49+12=61\)