Chứng minh rằng:
\(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}+\frac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\)
Cho ba số a, b, c thỏa mãn điều kiện: \(\dfrac{1}{bc-a^2}+\dfrac{1}{ca-b^2}+\dfrac{1}{ab-c^2}=0\)
Chứng minh rằng: \(\dfrac{a}{\left(bc-a^2\right)^2}+\dfrac{b}{\left(ca-b^2\right)^2}+\dfrac{c}{\left(ab-c^2\right)^2}=0\)
cho a+b=1 , a>0 , b<0 và biểu thức T với :
T = \(\frac{b-a}{ab}\): \(\left(\begin{matrix}\frac{b^2}{\left(a-b\right)^2}&-&\frac{2a^2b}{\left(a^2-b^2\right)^2}+\end{matrix}\frac{a^2}{b^2-a^2}\right)\)chứng minh rằng T + 4 <0
Cho ba số a, b, c có tổng khác 0 thỏa mãn \(a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\). Tính giá trị của biểu thức \(P=\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
Tính:
B = \(\dfrac{\text{(a^2 +b^2 +c^2)*(a+b+c)^2+(a*b+b*c+c*a)^2}}{\left(a+b+c\right)^2-\left(a\cdot b+b\cdot c+c\cdot a\right)}\)
C = \(\dfrac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\cdot\left(b-c\right)+b^2\cdot\left(c-a\right)+c^2\cdot\left(a-b\right)}\)
* Rút gọn phân thức:
a. \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
b. \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
d. \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
e. \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
Cứu trẫm. :3
Cho các số nguyên dương x,y thỏa mãn x+y=2. Tìm giá trị nhỏ nhất của biểu thức
\(A=\left(1+\dfrac{x^2}{y^2}\right)\left(1+\dfrac{y^2}{x^2}\right)\)
Thực hiên phép tính:
a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
b) \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)
c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
d) \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right]:\dfrac{x-y}{x}\)
cho a+b+c=.Tính N=\(\dfrac{a^2+b^2+c^2}{\left(b-c\right)^2+\left(c-a\right)^2+\left(a-b\right)^2}\)