Cho ba số a, b, c thỏa mãn điều kiện: \(\dfrac{1}{bc-a^2}+\dfrac{1}{ca-b^2}+\dfrac{1}{ab-c^2}=0\)
Chứng minh rằng: \(\dfrac{a}{\left(bc-a^2\right)^2}+\dfrac{b}{\left(ca-b^2\right)^2}+\dfrac{c}{\left(ab-c^2\right)^2}=0\)
Bài 148: Tính giá trị của biểu thức biết a+b+c=0
\(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
Bài 149: CMR nếu \(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ac\right)\left(a-abc\right)\)
và các số a, b, c, a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Thực hiện phép tính :
\(\dfrac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\dfrac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\dfrac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
Cho a,b,c là các số thực; a,b,c # 0 thỏa mãn :
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}-\dfrac{a^3+b^3+c^3}{abc}=2\)
Tính giá trị biểu thức:
A=\(\left[\left(a+b\right)^{2019}-c^{2019}\right]\left[\left(b+c\right)^{2019}-a^{2019}\right]\left[\left(a+c\right)^{2019}-b^{2019}\right]\)
1.Cho x+y=7 và x.y=12. Tính giá trị của A=\(x^4+y^4\).
2.Cho ba số a,b,c khác 0 và a+b+c=0. Tính A=\(\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ba}\)
3.Cho x=y+1. Chứng tỏ rằng \(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
Cho A = \(\left(\dfrac{2x}{x-2}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{6}{x+2}\)
a) Rút gọn biểu thức A
b) Tính giá trị của A biết: \(\left|2x-1\right|=3\)
c) Tìm x để A > 0
d) Tìm x để \(B=\dfrac{2}{x+1}\)
Chú ý nếu \(c>0\) thì \(\left(a+b\right)^2+c\) và \(\left(a-b\right)^2+c\) đều dương với mọi a, b
Áp dụng điều này chứng minh rằng :
a) Với mọi giá trị x khác \(\pm1\), biểu thức :
\(\dfrac{x+2}{x-1}.\left(\dfrac{x^3}{2x+2}+1\right)-\dfrac{8x+7}{2x^2-2}\) luôn có giá trị dương
b) Với mọi giá trị của x khác 0 và khác - 3, biểu thức :
\(\dfrac{1-x^2}{x}.\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\) luôn có giá trị âm
* Rút gọn phân thức:
a. \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
b. \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
d. \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
e. \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
Cứu trẫm. :3
Cho \(a^3+b^3+c^3=3abc\) và a+b+c khác 0 .Tính giá trị của biểu thức:
\(N=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Trình bày chi tiết vì sao \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)