thp chia: (3x3+4x-1):(x+1)
thp chia: (3x2+4x-1):(x+1)
\(\dfrac{3x^2+4x-1}{x+1}\)
\(=\dfrac{3x^2+3x+x+1-2}{x+1}\)
\(=3x+1+\dfrac{-2}{x+1}\)
Thực hiện phép chia:
1. (-3x3 + 5x2 - 9x + 15) : ( 3x + 5)
2. ( 5x4 + 9x3 - 2x2 - 4x - 8) : ( x-1)
3. ( 5x3 + 14x2 + 12x + 8 ) : (x + 2)
4. ( x4 - 2x3 + 2x -1 ) : ( x2 - 1)
5. ( 5x2 - 3x3 + 15 - 9x ) : ( 5 - 3x)
6. ( -x2 + 6x3 - 26x + 21) : ( 3 -2x )
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)
thực hiện phép chia
(-3x3 + 5x2 - 9x + 15) : (-3 + 5)
(x4 - 2x3 + 2x -1) : (x2 - 1)
(5x4 + 9x3 - 2x2 - 4x -8) : (x-1)
(5x3 + 14x2 + 12x + 8) : (x+2)
c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)
\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)
\(=5x^3+14x^2+12x+8\)
d) Ta có: \(\dfrac{5x^3+14x^2+12x+8}{x+2}\)
\(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}\)
\(=\dfrac{5x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)}{x+2}\)
\(=5x^2+4x+4\)
thực hiện phép chia
(-3x3 + 5x2 - 9x + 15) : (-3 + 5)
(x4 - 2x3 + 2x -1) : (x2 - 1)
(5x4 + 9x3 - 2x2 - 4x -8) : (x-1)
(5x3 + 14x2 + 12x + 8) : (x+2)
c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)
\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)
\(=5x^3+14x^2+12x+8\)
Với giá trị nào của a, b thì đa thức x4 - 3x3 + ax2 + 4x - b chia hết cho đa thức x2 - x + 1
Với giá trị nào của a, b thì đa thức x4 - 3x3 + ax2 + 4x - b chia hết cho đa thức x2 - x + 1
Thực hiện phép chia:
a) ( 3 x 3 + 10 x 2 - 5): (3x +1);
b) ( x 3 - 4x + 7): ( x 2 - 2x +1)
a) Đa thức thương x 2 + 3x – 1 và đa rhức dư -4.
Kiểm tra bằng cách thực hiện (3x + 1)( x 2 + 3x – 1) + (-4),
b) Đa thức thương x + 2 và đa thức dư –x + 5.
(x^2-1/2x):2x-(3x-1)^2.(3x-1)=0
(4x^4 + 3x3) : (-x^3) + (15x2 + 6x) : 3x =0
Ta có: \(\dfrac{4x^4+3x^3}{-x^3}+\dfrac{15x^2+6x}{3x}=0\)
\(\Leftrightarrow-4x-3+5x+2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Tìm a sao cho biểu thức A chia hết cho B(tìm a sao cho A:B ∈ Z)
1)A=x3-3x2-ax+3;B=x-1
2)A=3x3-16x2+25x+a;B=x2-4x+3
3)A=x4-x3+6x2-x+a;B=x2-x+5
\(1,A⋮B\Leftrightarrow x^3-3x^2-ax+3=\left(x-1\right)\cdot a\left(x\right)\)
Thay \(x=1\)
\(\Leftrightarrow1-3-a+3=0\\ \Leftrightarrow a=1\)
\(2,A⋮B\Leftrightarrow3x^3-16x^2+25x+a=\left(x^2-4x+3\right)\cdot b\left(x\right)\\ \Leftrightarrow3x^3-16x^2+25x+a=\left(x-3\right)\left(x-1\right)\cdot b\left(x\right)\)
Thay \(x=1\)
\(\Leftrightarrow3-16+25+a=0\\ \Leftrightarrow a=-12\)
Thay \(x=3\)
\(\Leftrightarrow3\cdot27-16\cdot9+25\cdot3+a=0\\ \Leftrightarrow81-144+75+a=0\\ \Leftrightarrow12+a=0\Leftrightarrow a=-12\)
Vậy \(a=-12\)