Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ghdoes
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:38

\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)

\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)

\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)

Lê Song Phương
Xem chi tiết
Nguyễn Đức Trí
20 tháng 8 2023 lúc 10:21

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

Tô Thanh Nhii
Xem chi tiết
Bùi Tuấn Trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 14:47

1:

a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

căn x+1>=1

=>2/căn x+1<=2

=>-2/căn x+1>=-2

=>A>=-2+1=-1

Dấu = xảy ra khi x=0

b: loading...

Phạm Phương Anh
Xem chi tiết
Thanh Hoang
Xem chi tiết
Thanh Hoang
20 tháng 8 2021 lúc 11:16

giups mình với

 

Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 23:07

1: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

Pink Pig
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 4 2022 lúc 21:38

a: Khi x=4 thì \(A=\left(\dfrac{2+2}{2+1}-\dfrac{2\cdot2-2}{2-1}\right)\cdot\left(4-1\right)=\dfrac{1}{3}\cdot3=1\)

b: \(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-2\right)\cdot\left(x-1\right)\)

\(=\dfrac{\sqrt{x}+2-2\sqrt{x}-2}{\sqrt{x}+1}\cdot\left(x-1\right)=-\sqrt{x}\left(\sqrt{x}-1\right)\)

Trang Nguyễn
Xem chi tiết
Lê Thị Thục Hiền
6 tháng 7 2021 lúc 10:54

\(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}}\right).\dfrac{\left(1-x\right)^2}{2}\) (ĐK:\(x>0;x\ne1\))

\(=\left[\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right].\dfrac{\left(x-1\right)^2}{2}\)

\(=\left[\dfrac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(x-1\right)\sqrt{x}}-\dfrac{x-1}{\sqrt{x}\left(x-1\right)}\right].\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-2\sqrt{x}-x+1}{\sqrt{x}\left(x-1\right)}.\dfrac{\left(x-1\right)^2}{2}=\dfrac{-2\sqrt{x}+1}{\sqrt{x}\left(x-1\right)}.\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(-2\sqrt{x}+1\right)\left(x-1\right)}{2\sqrt{x}}\) 

Sai đề ko em?

Nguyễn Lê Phước Thịnh
6 tháng 7 2021 lúc 10:55

a) Ta có: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)

\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)

\(=\dfrac{x-2\sqrt{x}-x+1}{\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)

\(=\dfrac{\left(-2\sqrt{x}+1\right)\left(x-1\right)}{2\sqrt{x}}\)

트릭시산
6 tháng 7 2021 lúc 10:58

=[√x−2x−1−√x+2√x(√x+2)].(x−1)22=[x−2x−1−x+2x(x+2)].(x−1)22

=x−2√x−x+1√x(x−1).(x−1)22=−2√x+1√x(x−1).(x−1)22=x−2x−x+1x(x−1).(x−1)22=−2x+1x(x−1).(x−1)22