\(Cho\frac{a}{c}=\frac{c}{b} Cminh\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Cho a,b,c là các số dương. CMinh
a) \(\frac{2a}{b+c}+\frac{b+c}{2a}\ge2\)
b) \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\frac{2a}{b+c}+\frac{b+c}{2a}\ge2\sqrt{\frac{2a\left(b+c\right)}{\left(b+c\right)2a}}=2\)
Dấu "=" xảy ra khi \(2a=b+c\)
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
a)Cho a+b+c=1. CMinh \(a^2+b^2+c^2\ge\frac{1}{3}\)
b)Cho a,b,c ≠0 và \(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}< a+b+c\)
Tính giá trị biểu thức:P=\(\frac{a^2+b^2}{\left(a+c\right)\left(b+c\right)}+\frac{a^2+c^2}{\left(b+c\right)\left(a+b\right)}+\frac{b^2+c^2}{\left(a+c\right)\left(a+b\right)}\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có:
\(\left(a+b+c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)=3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow1\le3\left(a^2+b^2+c^2\right)\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\)
Dấu "=" khi a=b=c
a)Cho 3 số a,b,c thỏa mãn abc=2019. Tính giá trị biểu thức:
M=\(\frac{2019a}{ab+2019a+2019}+\frac{b}{bc+b+2019}+\frac{c}{ac+c+1}\)
b)Cho b,c ≠0 và a+b+c=abc và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Cminh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{cb}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{a+b+c}{abc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{abc}{abc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
đpcm
\(M=\frac{2019a}{ab+2019a+2019}+\frac{b}{bc+b+2019}+\frac{c}{ca+c+1}\)
\(M=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ca+c+1}\)
\(M=\frac{ca}{1+ca+c}+\frac{1}{c+1+ac}+\frac{c}{ca+c+1}\)
\(M=\frac{ca+a+1}{1+ca+c}\)
\(M=1\)
Cho a, b, c > 0. CM:
a) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
b) \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{a^2+c^2}{a+c}\le\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
c) \(\frac{a^2+b^2}{a^2-2ab+b^2}+\frac{b^2+c^2}{b^2-2bc+c^2}+\frac{c^2+a^2}{c^2-2ac+a^2}\ge\frac{5}{2}\)
(a, b, c đôi một khác nhau)
cho a,b,c thỏa mãn: \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
thì \(|a|=|b|=|c|\)
Cho a, b, c > 0. CM:
a)\(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)
b)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{b+c}{a^2+bc}+\frac{c+a}{b^2+ac}+\frac{a+b}{c^2+ab}\)
c)\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Làm được câu nào thì làm giúp mình câu đó nhé!
Lần sau đăng ít một thôi toàn bài dài :v, ko phải ko làm mà là ngại làm
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a+2b+c}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right);\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{4}\)
Xảy ra khi \(a=b=c\)
b)Đặt \(THANG=abc\left(a^2+bc\right)\left(b^2+ac\right)\left(c^2+ab\right)>0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{b+c}{a^2+bc}-\frac{c+a}{b^2+ac}-\frac{a+b}{a^2+ab}\)
\(=\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{THANG}\)
\(=\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)+\left(c^2a^2-a^2b^2\right)^2}{2THANG}\ge0\) (Đúng)
Xảy ra khi \(a=b=c\)
c)Ta có:\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)
Và \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(b+a\right)\left(b^2+a^2\right)}\)
Cộng theo vế 3 đăng thức trên ta có:
\(VT-VP=Σ\left[\frac{ab\left(a-b\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)
\(=\left(a^2+b^2+c^2+ab+bc+ca\right)\cdotΣ\frac{ab\left(a-b\right)^2}{\left(b+c\right)\left(c+a\right)\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge0\)
2 bài cuối full quy đồng mệt thật :v
Cho a, b, c > 0
a) CM: \(\frac{a^2}{b+c}+\frac{b^2}{b+c}+\frac{c^2}{b+a}\ge\frac{a+b+c}{2}\)
b) CM: \(\frac{a}{a^2+b^2}+\frac{b}{b^2+c^2}+\frac{c}{a^2+c^2}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
a
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Tương tự với 2 cụm còn lại, cộng theo vế và thu gọn sẽ được đpcm.
b
\(a^2+b^2\ge2ab\)
\(\Rightarrow\frac{a}{a^2+b^2}\le\frac{a}{2ab}=\frac{1}{2b}\)
Tương tự với 2 cụm còn lại, cộng theo vế là được đpcm.
mình chỉ làm đc câu a thôi nhưng dài lắm
bài đó áp dụng bất đẳng thức cô si
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)