Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Quang Trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2023 lúc 22:26

\(S=5+5^2+5^3+...+5^{2020}+5^{2021}\)

=>\(5\cdot S=5^2+5^3+5^4+...+5^{2021}+5^{2022}\)

=>\(5S-S=5^2+5^3+...+5^{2021}+5^{2022}-5-5^2-5^3-...-5^{2020}-5^{2021}\)

=>\(4S=5^{2022}-5\)

=>\(4S+5=5^{2022}\)

Nguyễn Thị Vương Bích
Xem chi tiết
phan thị hoài thanh
Xem chi tiết
Đỗ Việt Dũng
14 tháng 11 2023 lúc 20:48

Đễ

Ga*#lax&y
Xem chi tiết
Minh Hiếu
18 tháng 9 2021 lúc 14:10

\(A=5+5^2+5^3+...+5^{2021}\)

\(=5\left(1+5\right)+5^2\left(1+5\right)+...+5^{2020}\left(1+5\right)\)

\(=5.6+5^2.6+...+5^{2020}.6\)

\(=6\left(5+5^2+...+5^{2020}\right)\)

Vì \(6\left(5+5^2+...+5^{2020}\right)\) ⋮6

⇒A không là số chính phương

Minh Hiếu
18 tháng 9 2021 lúc 14:12

viết nhầm nha A ⋮6

Nguyễn Hoàng Minh
18 tháng 9 2021 lúc 14:14

\(A=5+5^2+5^3+...+5^{2021}⋮5\)

\(\Rightarrow5A=5^2+5^3+5^4+...+5^{2022}⋮25\) (vì đều chia hết \(5^2\))

\(\Rightarrow A⋮̸5^2=25\left(5⋮̸25\right)\)

Mà số chính phương chia hết cho 5 thì chia hết cho 25

Vậy A không phải là số chính phương

Thân Đức Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2023 lúc 9:53

loading...  

Thằng Bờm
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 21:44

5A=5+5^2+...+5^2023

=>4A=5^2023-1

=>\(A=\dfrac{5^{2023}-1}{4}\)

\(2B-A=\dfrac{5^{2023}}{4}-\dfrac{5^{2023}-1}{4}=\dfrac{1}{4}\)

Ng Ngọc
2 tháng 1 2023 lúc 21:47
Lê Thị Linh
Xem chi tiết
Lương Thị Vân Anh
8 tháng 9 2023 lúc 21:56

Ta có A = 5 + 52 + 53 + ... + 52021

5A = 52 + 53 + 54 + ... + 52022

5A - A = ( 52 + 53 + 54 + ... + 52022 ) - ( 5 + 52 + 53 + ... + 52021 )

4A = 52022 - 5

A = \(\dfrac{5^{2022}-5}{4}\)

Lê Thị Linh
8 tháng 9 2023 lúc 22:19

Tìm chữ số tận cùng của kết quả mỗi phép tính sau:

a. 4915

b. 5410

c. 1120+11921+200022

 

Hoàng Khánh Chi
Xem chi tiết
Akai Haruma
18 tháng 11 2021 lúc 21:49

Lời giải:
a. Ta thấy:

$3+3^2+3^3+...+3^{99}\vdots 3$

$1\not\vdots 3$

$\Rightarrow A=1+3+3^2+...+3^{99}\not\vdots 3$

$\Rightarrow A\not\vdots 9$

b.

$A=(5+5^2)+(5^3+5^4)+...+(5^{39}+5^{40})$

$=5(1+5)+5^3(1+5)+...+5^{39}(1+5)$

$=5.6+5^3.6+....+5^{39}.6$

$=6(5+5^3+...+5^{39})$

$=2.3.(5+5^3+...+5^{39})$

$\Rightarrow A\vdots 2$ và $A\vdots 3$

Nguyễn Hà My
Xem chi tiết