(m-1)^3-4m(m+1)(m-1)+3(m-1)m^2+m+1)
chứng minh rằng với mọi m thuộc N ta có
4/4m+2 = 1/m+1 +1/(m+1)(2m+1)
b) 4/4m+3 = 1/(m+2) + 1/(m+1)(m+2) + 1/(m+1)(4m+3)
giúp mình đi mai nộp rồi
chứng minh với mọi m thuộc N, ta có : \(\frac{4}{4m+3}=\frac{1}{m+2}+\frac{1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
Định m để phương trình vô nghiệm
1) (m + 1)x - (x + 2) = 0
2) (m +1)2x - 2 = (4m + 9)x + m
3) m2(x - 1) = 2(2x - m - 4)
4) (4m2 - 2)x = 1 + 2m - x
1: \(\Leftrightarrow x\left(m+1-1\right)-2=0\)
=>mx-2=0
Để phương trình vô nghiệm thì m=0
2: \(\Leftrightarrow x\left(m^2+2m+1-4m-9\right)=m+2\)
\(\Leftrightarrow x\left(m^2-2m-8\right)=m+2\)
Để phương trình vô nghiệm thì m-4=0
hay m=4
3: \(\Leftrightarrow m^2x-m^2=4x-2m-8\)
\(\Leftrightarrow x\left(m^2-4\right)=m^2-2m-8=\left(m-4\right)\left(m+2\right)\)
để pt vô nghiệm thì m-2=0
hay m=2
CMR với \(m\in N\):
a) \(\frac{4}{4m+2}=\frac{1}{m+1}+\frac{1}{\left(m+1\right)\left(2m+1\right)}\)
b) \(\frac{4}{m+3}=\frac{1}{m+2}+\frac{1}{\left(m+1\right)\left(m+2\right)+}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
a) \(\frac{1}{m+1}+\frac{1}{\left(m+1\right)\left(2m+1\right)}\)
\(=\frac{2m+1}{\left(m+1\right)\left(2m+1\right)}+\frac{1}{\left(m+1\right)\left(2m+1\right)}\)
\(=\frac{2m+2}{\left(m+1\right)\left(2m+1\right)}\)
\(=\frac{2\left(m+1\right)}{\left(m+1\right)\left(2m+1\right)}\)
\(=\frac{2}{2m+1}=\frac{4}{4m+2}\left(đpcm\right)\)
b) \(\frac{1}{m+2}+\frac{1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{m+1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{m+2}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{1}{m+1}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{4m+3}{\left(m+1\right)\left(4m+3\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{4m+4}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{4\left(m+1\right)}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{4}{4m+3}\left(đpcm\right)\)
Cho hàm số y=x^3 -3(m+1) x^2 +2(m^2+4m+1) x -4m(m+1). Các giá trị của m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có hoành độ lớn hơn 1 là?
Loại bài này trước hết phải phân tích để mò coi pt có nghiệm cố định nào không:
\(x^3-3\left(m+1\right)x^2+2\left(m^2+4m+1\right)x-4m\left(m+1\right)=0\)
\(\Leftrightarrow2\left(x-2\right)m^2+\left(-3x^2+8x-4\right)m+\left(x^3-3x^2+2x\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(x-2\right)=0\\-3x^2+8x-4=0\\x^3-3x^2+2x=0\end{matrix}\right.\)
Cả 3 pt trên đều có nghiệm \(x=2\), vậy pt đã cho luôn có nghiệm cố định \(x=2\) với mọi m, sử dụng lược đồ Hoocne để hạ bậc ta đưa được pt về:
\(x^3-3\left(m+1\right)x^2+2\left(m^2+4m+1\right)x-4m\left(m+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-\left(3m+1\right)x+2m^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^2-\left(3m+1\right)x+2m^2+2m=0\left(1\right)\end{matrix}\right.\)
Để pt đã cho có 3 nghiệm pb đều lớn hơn 1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb lớn hơn 1 và khác 2
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\f\left(1\right)>0\\\frac{x_1+x_2}{2}>1\\f\left(2\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(3m+1\right)^2-4\left(2m^2+2m\right)>0\\1-\left(3m+1\right)+2m^2+2m>0\\3m+1>2\\4-2\left(3m+1\right)+2m^2+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2>0\\2m^2-m>0\\m>\frac{1}{3}\\2m^2-4m+2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\frac{1}{2}\\m\ne1\end{matrix}\right.\)
Với những giá trị nào của tham số m thì (C) : y= x3- 3( m+ 1) x2+ 2( m 2+ 4m+1 ) x-4m( m+1 ) cắt trục hoành tại ba điểm phân biệt có hoành độ lớn hơn 1?
A. 1 2 < m ≠ 1
B. m< 1
C. m> 1/2
D. m≠ 1
+ Phương trình hoành độ giao điểm của đồ thị C và trục Ox:
x3- 3( m+ 1) x2+ 2( m 2+ 4m+1 )= 0
hay ( x- 2) ( x2-( 3m+ 1) x+ 2m2+ 2m) =0
Yêu cầu bài toán
Vậy ½< m và m≠ 1.
Chọn A.
Số điểm cố định của đồ thị hàm số y = x 3 − 3 ( m + 1 ) x 2 + 2 ( m 2 + 4 m + 1 ) x − 4 m ( m + 1 ) khi m thay đổi là:
A. 0
B. 1
C. 2
D. 3
Đáp án B.
Gọi điểm cố định là A ( x 0 ; y 0 )
⇒ y 0 = x 0 3 − 3 ( m + 1 ) x 0 2 + 2 ( m 2 + 4 m + 1 ) x 0 − 4 m ( m + 1 ) ∀ m
⇔ 2 ( x 0 − 2 ) m 2 − ( 3 x 0 2 − 8 x 0 + 4 ) m + x 0 3 − 3 x o 2 + 2 x 0 − y 0 = 0 ∀ m
⇔ x 0 − 2 = 0 3 x 0 2 − 8 x 0 + 4 = 0 x 0 3 − 3 x 0 2 + 2 x 0 − y 0 = 0 ⇔ x 0 = 2 y 0 = 0 ⇒ A ( 2 ; 0 )
=>Có một điểm cố định
Số điểm cố định của đồ thị hàm số y = x 3 − 3 ( m + 1 ) x 2 + 2 ( m 2 + 4 m + 1 ) x − 4 m ( m + 1 ) khi m thay đổi là:
A. 0
B. 1
C. 2
D. 3
Bài 1: Cho y=(4m+3)x-m+3 (d)
y=(4m-1)x+3m-1 (d1)
a,Tìm m để (d) cắt (d1) tại 1 điểm trên trục tung
b,Tìm m để (d) cắt (d1) tại 1 điểm trên trục hoành
c,Tìm m để (d) và (d1) cắt nhau tại 1 điểm Bài 2: Cho y=(m-1)x+2m-5 (d2) (m khác 1)
a,Tìm m để phương trình đường thẳng (d2) song song với đường thẳng (d3) y=3x+1
b,Tìm m để phương trình đường thẳng (d2) đi qua M(2;1)
c,Vẽ đồ thị của đường thẳng (d2) với giá trị của m tìm được ở câu b. Tính góc tạo bởi đường thẳng vẽ được với trục hoành