Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Dũng

Cho hàm số y=x^3 -3(m+1) x^2 +2(m^2+4m+1) x -4m(m+1). Các giá trị của m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có hoành độ lớn hơn 1 là?

Nguyễn Việt Lâm
26 tháng 11 2019 lúc 17:54

Loại bài này trước hết phải phân tích để mò coi pt có nghiệm cố định nào không:

\(x^3-3\left(m+1\right)x^2+2\left(m^2+4m+1\right)x-4m\left(m+1\right)=0\)

\(\Leftrightarrow2\left(x-2\right)m^2+\left(-3x^2+8x-4\right)m+\left(x^3-3x^2+2x\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2\left(x-2\right)=0\\-3x^2+8x-4=0\\x^3-3x^2+2x=0\end{matrix}\right.\)

Cả 3 pt trên đều có nghiệm \(x=2\), vậy pt đã cho luôn có nghiệm cố định \(x=2\) với mọi m, sử dụng lược đồ Hoocne để hạ bậc ta đưa được pt về:

\(x^3-3\left(m+1\right)x^2+2\left(m^2+4m+1\right)x-4m\left(m+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-\left(3m+1\right)x+2m^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^2-\left(3m+1\right)x+2m^2+2m=0\left(1\right)\end{matrix}\right.\)

Để pt đã cho có 3 nghiệm pb đều lớn hơn 1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb lớn hơn 1 và khác 2

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\f\left(1\right)>0\\\frac{x_1+x_2}{2}>1\\f\left(2\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(3m+1\right)^2-4\left(2m^2+2m\right)>0\\1-\left(3m+1\right)+2m^2+2m>0\\3m+1>2\\4-2\left(3m+1\right)+2m^2+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2>0\\2m^2-m>0\\m>\frac{1}{3}\\2m^2-4m+2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\frac{1}{2}\\m\ne1\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hà Mi
Xem chi tiết
Hòa Phạm
Xem chi tiết
Hồng Thy
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Nguyễn Thành Trung
Xem chi tiết
Hà Mi
Xem chi tiết
Tôn Phương Trâm Trần
Xem chi tiết
Hà Mi
Xem chi tiết
Nguyễn Ngọc Minh
Xem chi tiết