Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyền
Xem chi tiết
Trần Quốc An
Xem chi tiết
Hà Thị Quỳnh
10 tháng 6 2016 lúc 14:01

Ta có \(D=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}.\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\)

                                                                   \(=1-\frac{1}{10}=\frac{9}{10}< 1\)

\(\Rightarrow D< 1\)

Vậy \(D< 1\)

TFBoys_Thúy Vân
10 tháng 6 2016 lúc 14:16

Ta có: 1/22 < 1/1.2

           1/32 <  1/2.3

          1/42 < 1/3.4

             ......

           1/102 < 1/9.10

=> D < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/9.10

=> D < 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 -1/10

=> D < 1 - 1/10

=> D < 9/10

=. D < 9/10 < 1

=> D < 1 ( đpcm )

Earth-K-391
Xem chi tiết

Giải:

a)  \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\) 

\(\Rightarrow7< \dfrac{x^2}{4}< 10\) 

\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\) 

\(\Rightarrow x^2=36\) 

\(\Rightarrow x=6\) 

b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\) 

 \(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\) 

Từ (1) và (2), ta có:

\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)

khanh hong
Xem chi tiết
Dũng Lê Trí
9 tháng 5 2017 lúc 10:55

Bài này nhiều người đăng lắm,bạn vào câu hỏi tương tự 

Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

Đặt A =\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{3\cdot2}\)

...

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(A=1-\frac{1}{10}< 1\)

\(\Rightarrow B< A< 1\left(đpcm\right)\)

Nguyễn Trúc Khanh
Xem chi tiết
Zlatan Ibrahimovic
10 tháng 5 2017 lúc 10:22

Đặt A=đã cho.

Ta thấy:

1/2^2<1/1*2(vì 2^2>1*2).

1/3^2<1/2*3(vì 3^2>2*3).

...

1/10^2<1/9*10(vì 10^2>9*10).

=>A<1/1*2+1/2*3+1/3*4+...+1/9*10.

=>A<1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10.

=>A<1-1/10.

=>A<9/10.

Mà 9/10<1.

=>A<1.

Vậy A<1(đpcm).

doan huong tra
10 tháng 5 2017 lúc 10:17

khó quá mik trả lời ko được

Five centimeters per sec...
10 tháng 5 2017 lúc 10:23

Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}=1-\frac{1}{10}=\frac{9}{10}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)     ( đpcm )

Hồ Trúc
Xem chi tiết
Lê Hằng
11 tháng 8 2016 lúc 6:14

Ta có:

 A = \(\frac{1}{2^2}\) + \(\frac{1}{3^2}\) + \(\frac{1}{4^2}\)+....+ \(\frac{1}{11^2}\) 

A  = \(\frac{1}{2.2}\) + \(\frac{1}{3.3}\) + \(\frac{1}{4.4}\)+....+ \(\frac{1}{11.11}\)

A   < \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +\(\frac{1}{3.4}\) + .... + \(\frac{1}{10.11}\)

A   < 1 - \(\frac{1}{2}\)\(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ...... + \(\frac{1}{10}\) - \(\frac{1}{11}\)

A   <  1 - \(\frac{1}{11}\)

\(\Rightarrow\) A  <   \(\frac{10}{11}\)

Trịnh Thị Thúy Vân
11 tháng 8 2016 lúc 8:58

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

             .........

              \(\frac{1}{11^2}< \frac{1}{10.11}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)

Lại có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)

\(=1-\frac{1}{11}\)

\(=\frac{10}{11}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=\frac{10}{11}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..+\frac{1}{11^2}< \frac{10}{11}\) ( đpcm )

Vampire Princess
Xem chi tiết
nguyen duc thang
22 tháng 3 2018 lúc 17:47

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

....

\(\frac{1}{10^2}\)\(\frac{1}{9.10}\)

=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)\(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\)

=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)\(\frac{9}{10}\)< 1

=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)< 1 ( dpcm )

nguyễn công giảng
22 tháng 3 2018 lúc 17:48

\(\frac{1}{4}\)+\(\frac{1}{9}\)+

Penguins
Xem chi tiết
Akai Haruma
10 tháng 3 2019 lúc 16:46

Lời giải:

Ta có:

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{10^2}< \underbrace{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}}_{M}\)

Mà:

\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{10-9}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}<1\)

Do đó: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)

Ta có đpcm.

Fenny
Xem chi tiết
๓เภђ ภوยץễภ ђảเ
25 tháng 9 2020 lúc 16:38

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

Khách vãng lai đã xóa
Fenny
27 tháng 9 2020 lúc 9:41

sửa rồi nhá bn

Khách vãng lai đã xóa
๓เภђ ภوยץễภ ђảเ
27 tháng 9 2020 lúc 14:50

\(C=\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(\Rightarrow2C=1-\frac{1}{2}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(\Rightarrow2C+C=(1-\frac{1}{2}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}})+\)\((\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}})\)

\(\Rightarrow3C=1-\frac{1}{100}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{300}< \frac{1}{3}\left(đpcm\right)\)

Khách vãng lai đã xóa