Phân tích đa thức thành nhân tử: x(x+2)+x(x-5)-5(x+2)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
phân tích đa thức thành nhân tử
$x^{2}$ `(x-5)` `+` `x` `-` `5`
\(=\left(x-5\right)\left(x^{^2}+1\right)\)
\(x^2\left(x-5\right)+x-5=x^2\left(x-5\right)+\left(x-5\right)=\left(x-5\right)\left(x^2+1\right)\)
\(x^2\)(5\(x^2\)-x+3)
Phân tích đa thức thành nhân tử
Biểu thức này không phân tích được thành nhân tử nữa bạn nhé.
Phân tích đa thức thành nhân tử:
x(x+1)^2+x(x-5)-5(x+1)^2
x(x+1)^2+x(x-5)-5(x+1)^2
=(x+1)^2(x-5)+x(x-5)
=(x-5)((x+1)^2+x)
=(x-5)(x^2+3x+1)
~~~~~~~~~~~Ai đi qua nhớ để lại ~~~~~~~~~~~~~~~~~
Phân tích đa thức thành nhân tử: x^5+x^3-x^2-1
\(=x^3\left(x^2+1\right)-\left(x^2+1\right)=\left(x^3-1\right)\left(x^2+1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x^2+1\right)\)
phân tích đa thức thành nhân tử :
(x + 2) (x + 3) (x + 4) (x + 5) - 24
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(x^2+7x+11\right)^2-1-24\\ =\left(x^2+7x+11\right)^2-25\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)+1-25\)
\(=\left(x^2+7x+11\right)^2-25=\left(x^2+7x+11+5\right)\left(x^2+7x+11-5\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
=[(x+2)(x+5)][(x+3)(x+4)]−24=(x2+7x+10)(x2+7x+12)−24=(x2+7x+11)2−1−24=(x2+7x+11)2−25=(x2+7x+11−5)(x2+7x+11+5)=(x2+7x+6)(x2+7x+16)=(x+1)(x+6)(x2+7x+16)
phân tích đa thức thành nhân tử
\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)
\(=2\left(x^2+x-5\right)-2\left(x^2+x-5\right)-3\left(x^2+x-5\right)+3\)
\(=2\left(x^2+x-5\right)\left(x^2+x-6\right)-3\left(x^2+x-6\right)\)
\(=\left(x^2+x-6\right)\left(2x^2+2x-13\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)
\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
Đặt t=\(x^2+x\)
\(\Rightarrow C=2\left(t-5\right)^2-5t+28=2t^2-20t+50-5t+28=2t^2-25t+78=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)\)
Thay t: \(C=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)=2\left(x^2+x-\dfrac{13}{2}\right)\left(x^2+x-6\right)=2\left(x-2\right)\left(x+3\right)\left(x^2+x-\dfrac{13}{2}\right)\)
Ta có: \(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)
\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha