Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Minh Thư

phân tích đa thức thành nhân tử

\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)

Nguyễn Việt Lâm
19 tháng 8 2021 lúc 17:30

\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)

\(=2\left(x^2+x-5\right)-2\left(x^2+x-5\right)-3\left(x^2+x-5\right)+3\)

\(=2\left(x^2+x-5\right)\left(x^2+x-6\right)-3\left(x^2+x-6\right)\)

\(=\left(x^2+x-6\right)\left(2x^2+2x-13\right)\)

\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)

Lấp La Lấp Lánh
19 tháng 8 2021 lúc 17:41

\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)

Đặt t=\(x^2+x\)

\(\Rightarrow C=2\left(t-5\right)^2-5t+28=2t^2-20t+50-5t+28=2t^2-25t+78=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)\)

Thay t: \(C=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)=2\left(x^2+x-\dfrac{13}{2}\right)\left(x^2+x-6\right)=2\left(x-2\right)\left(x+3\right)\left(x^2+x-\dfrac{13}{2}\right)\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 22:50

Ta có: \(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)

\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)

\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)


Các câu hỏi tương tự
Dung Vu
Xem chi tiết
Phan Thị Hồng Nhung
Xem chi tiết
Dung Vu
Xem chi tiết
Minh Hiếu
Xem chi tiết
cherry moon
Xem chi tiết
Nguyễn Ngọc Linh Nhi
Xem chi tiết
Dung Vu
Xem chi tiết
Huong Nguyen Thi Tuyet
Xem chi tiết
Nguyễn Thùy Duyên
Xem chi tiết