cm x^4-2x^3+2x^2-2x+1> hoặc bằng 0 với mọi giá trị của x
Tìm giá trị nhỏ nhất của các bthuc sau
vd; P=x^2-2x+2023
= x^2-2x.1+2022
tại (x-1)^2 lớn hơn/bằng 0, với mọi x
=> (x-1)^2+2022 lớn hơn hoặc bằng 2022 với mọi x
vậy P đạt giá trị nhỏn nhất bằng 2022 kkhi x=1
BT:
P=x^2+2x-2024
P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025
Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.
Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.
Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.
Với mọi số thực x bất kì, CM rằng
1, x^2 - x + 1
2, -2x^2 - x - 1 < 0
3, 1/2x^2 - 2x + 2 >= 0 ( >=: lớn hơn hoặc bằng )
Help mình cái
\(1,x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\\ 2,-2x^2-x-1=-2\left(x^2+2\cdot\dfrac{1}{4}x+\dfrac{1}{16}+\dfrac{7}{16}\right)\\ =-2\left(x+\dfrac{1}{4}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\\ 3,\dfrac{1}{2}x^2-2x+2=\dfrac{1}{2}\left(x^2-4x+4\right)=\dfrac{1}{2}\left(x-2\right)^2\ge0\)
1: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
Tìm Giá trị của x để biểu thức sau :
a) (5x+7).(2x-1) nhỏ hơn hoặc bằng 0
b) (2x-1).(3-x) lớn hơn hoặc bằng 0
c) (2x-5).(3-2x) lớn hơn hoặc bằng 0
a, (5x+7)(2x-1) <0
<=> \(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}5x< 7\\2x< 1\end{cases}}\)
<=> \(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}}\)<=> ..................
(5x+7)(2x-1) =0
<=> \(\orbr{\begin{cases}5x+7=0\\2x-1=0\end{cases}}\)<=> ..................
a) \(\left(5x+7\right)\left(2x-1\right)\le0\)
Ta có 2 trường hợp
\(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}5x>-7\\2x< 1\end{cases}\Rightarrow}\hept{\begin{cases}x>\frac{-7}{5}\\x< \frac{1}{2}\end{cases}\Rightarrow}\frac{-7}{5}< x< 1}\)
\(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}\Rightarrow\hept{\begin{cases}5x< -7\\2x>1\end{cases}\Rightarrow}\hept{\begin{cases}x< \frac{-7}{5}\\x>\frac{1}{2}\end{cases}}}\Rightarrow x\in O\)
Vậy trường hợp 1 thõa mãn đề bài :
Mấy câu còn lại giống vậy
Bài 6: Chứng minh rằng:
a) x2 – x + 1 > 0 với mọi số thực x
b) -x2+2x -4 < 0 với mọi số thực x
Bài 7: Tính nhanh giá trị biểu thức:
tại x = 18; y = 4
b) (2x + 1)2 + (2x - 1)2 - 2(1 + 2x)(1 - 2x) tại x = 100
a) x2 – x + 1
=(x2 – x + 1/4 )+3/4
=(x-1/2)2+3/4
ta có (x-1/2)2>=0
(x-1/2)2+3/4>=+3/4>0
vậy (x-1/2)2+3/4>0 với mọi số thực x
b) -x2+2x -4
= -x2+2x -1-3
=-(x2-2x +1)-3
=-(x-2)2-3
ta có (x-2)2>=0
=>-(x-2)2=<0
=>-(x-2)2-3=<-3<0
vậy -(x-2)2-3<0 với mọi số thực x
cho f(x)=-x^2-2x+m. Tất cả các giá trị của tham số m để f(x) nhỏ hơn hoặc bằng 0 với mọi x thuộc R
\(f\left(x\right)=-x^2-2x+m\)
\(f\left(x\right)\le0,\forall x\in R\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< 0\left(LĐ\right)\\\left(-2\right)^2-4.\left(-1\right).m\le0\end{matrix}\right.\)
\(\Leftrightarrow4+4m\le0\)
\(\Leftrightarrow4m\le-4\)
\(\Leftrightarrow m\le-1\)
chứng minh rằng x^4+2x^3-2x^2-10x+20 >0 với mọi giá trị của x
= (x2-x+1)(x2+3x+10)+10 = P
x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0
x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0
vây P>0
Chứng minh rằng:
x2-x+3/4 > 0 với mọi giá trị của x
x4+2y(2y-1)+2x2(y-1)+ >hoặc= 0 với mọi số thực x
cần gấp để ôn bài chiều kiểm tra
Rút gọn rồi CM biểu thức sau không âm với mọi giá trị của x
X^4+X^3+X+1/X^4-X^3+2x^2-X+1
Chứng minh rằng x^4 + 2x^3 - 2x^2 - 10x + 20 > 0 với mọi giá trị của x