Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Emmaly
Xem chi tiết
Monkey D. Luffy
17 tháng 11 2021 lúc 18:25

\(=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ =\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\\ =\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Vậy GTNN của biểu thức là 2

The darksied
Xem chi tiết
Nguyễn Huệ Lam
13 tháng 7 2017 lúc 9:38

\(G=x^2-4xy+5y^2+10x-22y+28.\)

\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Do \(\left(x-2y+5\right)^2+\left(y-1\right)^2\ge0\forall x\)nên \(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Vậy \(MinG=2\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Trà My
13 tháng 7 2017 lúc 9:37

\(G=x^2-4xy+5y^2+10x-22y+28\)

\(G=x^2-2x\left(2y-5\right)+5y^2-22y+28\)

\(G=x^2-2x\left(2y-5\right)+\left(4y^2-20y+25\right)+\left(y^2-2y+1\right)+2\)

\(G=x^2-2x\left(2y-5\right)+\left(2x-5\right)^2+\left(y-1\right)^2+2\)

\(G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu "=" xảy ra khi x=-3;y=1

Nguyễn Thị Trang
Xem chi tiết
Hoàng Phúc
11 tháng 7 2016 lúc 11:14

Đặt \(A=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2-4xy+10x+5y^2-22y+28\)

\(=x^2-x\left(4y-10\right)+5y^2-22y+28\)

\(=x^2-2.x.\frac{4y-10}{2}+\left(\frac{4y-10}{2}\right)^2+5y^2-22y-\left(\frac{4y-10}{2}\right)^2+28\)

\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-\frac{16y^2-80y+100}{4}+28\)

\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-4y^2+20y-25+28\)

\(=\left(x-\frac{4y-10}{2}\right)^2+y^2-2y+3=\left(x-\frac{4y-10}{2}\right)^2+y^2-2.y.1+1^2+2\)

\(=\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\)

\(\left(x-\frac{4y-10}{2}\right)^2\ge0;\left(y-1\right)^2\ge0=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2\ge0\)

\(=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\ge2\) (với mọi x,y)

Dấu "=" xảy ra \(< =>\hept{\begin{cases}\left(x-\frac{4y-10}{2}\right)^2=0\\\left(y-1\right)^2=0\end{cases}}< =>\hept{\begin{cases}x-\frac{4y-10}{2}=0\\y=1\end{cases}}< =>\hept{\begin{cases}x-\frac{4-10}{2}=0\\y=1\end{cases}}\)

\(< =>\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy MInA=2 khi x=-3;y=1


 

Nguyễn Thị Trang
11 tháng 7 2016 lúc 16:23

Amin=2

nguyễn thị hà uyên
Xem chi tiết
Đinh Đức Hùng
16 tháng 10 2017 lúc 19:00

\(B=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(B_{min}=2\) tại \(x=-3;y=1\)

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 6 2022 lúc 12:56

b: \(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Dấu '=' xảy ra khi x=0 hoặc x=-5

a: \(A=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

hanhungquan
Xem chi tiết
Nguyen Thuy Dung
28 tháng 9 2018 lúc 21:33

a) A = x^2 -10x + 27
Ta có:
A = x^2 - 10x + 27
   = x^2 - 2.x.5 + 5^2  + 2
   = (x-5)^2 + 2
Do (x-5)^2 > 0 ( với mọi x )
=> (x-5)^2 + 2 > 2 (với mọi x)
=> Amin = 2
Dấu "=" xãy ra khi và chỉ khi x-5=0  <=> x=5
Vậy : GTNN của A bằng 2 tại x = 5

Nguyen Thuy Dung
28 tháng 9 2018 lúc 21:41

b, B = 4x^2 + 4x + 20
Ta có :
 B = 4x^2 + 4x + 20
     = (2x)^2 + 2.2x.1 + 1^2 + 19
     = (2x+1)^2  + 19
Do (2x+1)^2 > 0 ( với mọi x)
=> (2x+1)^2 + 19 > 19 (với mọi x)
=> B > 19 (mọi x)
=> Bmin = 19
Dấu "=" xãy ra <=> 2x+1 = 0
<=> x = -1/2
Vậy : GTNN của B =19 tại x = -1/2

Thảo Lê
Xem chi tiết
Phía sau một cô gái
3 tháng 9 2021 lúc 20:15

\(C=x^2-4xy+5y^2+10x-22y+28\)

    \(=x^2-4xy+10x+4y^2+25-10y+y^2-2y+3\)

    \(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Vậy \(GTNN=2\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

⭐Hannie⭐
Xem chi tiết
Phan Nguyễn Ngọc Hân
Xem chi tiết