1/2+1/3+1/4+...+1/100=
mình cần gấp
Hãy chứng tỏ rằng : 100-[1+1/2+1/3+...+1/100] = 1/2+2/3+3/4+...+99/100
Mình cần gấp
Ta có : \(\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)
= \((1-\frac{1}{2})+(1-\frac{1}{3})+...+(1-\frac{99}{100})\)(100 cặp số )
= \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)(100 số hạng 1)
= \(1\times100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}\right)\)
= \(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=> 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100
Bạn cố giải cho mình dễ hiểu hơn ko?
Mn ơi giải giúp mình bài này với ạ. Mình đang cần gấp
Tính tổng
1/1+1^2+1^4 + 2/1+2^2+2^4 + 3/1+3^2+3^4 +.......+ 100/1+100^2+100^4
Thx nha ai nhanh thì mình tick dấu cho nha
Chứng minh rằng: \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^3}\)+\(\dfrac{1}{4^2}+....+\dfrac{1}{100^2}< \dfrac{3}{4}\)
Giúp mình với.Mình cần gấp ạ
Chứng minh rằng:\(\dfrac{1}{3^2}\)+ \(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\) <\(\dfrac{1}{2}\)
Mình cần gấp!
A=1/3^2+1/4^2+1/5^2+1/6^2+...+1/100^2<1/2-1/3+1/3-1/4+...+1/99-1/100
=>A<1/2-1/100<1/2
Tìm B=1/2-1/2^2+1/2^3-1/2^4+...+1/2^99-1/2^100
Mọi người nhanh giúp mình nhé! Mình đang cần gấp
Ta có:
B=1/2-1/2^2-1/2^3-...-1/2^100
B/2=1/2^2-1/2^3-1/2^4-....-1/2^101
B/2-B=1/2^101-1/2
=>B=(1/2^101-1/2).2
Vậy:B=(1/2^101-1/2).2
Chứng minh rằng :
1- \(\dfrac{1}{2^2}\) - \(\dfrac{1}{3^2}\) - … - \(\dfrac{1}{100^2}\) > \(\dfrac{1}{100}\)
giúp mình với mình cần gấp
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\) \(\Rightarrow A< \dfrac{99}{100}\)
\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{100^2}=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)=1-A>\dfrac{1}{100}\)
D = 5/1+2+3 + 5/1+2+3+4 + ....... + 5/1+2+3+......+100
làm ơn giúp mình lần cuối thôi mình đang cần gấp !!!
làm ơn
\(D=\frac{5}{1+2+3}+\frac{5}{1+2+3+4}+...+\frac{5}{1+2+...+100}\)
\(\Rightarrow D=5\left(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+...+100}\right)\)
\(\Rightarrow D=5\left(\frac{1}{\frac{4.3}{2}}+\frac{1}{\frac{5.4}{2}}+...+\frac{1}{\frac{101.100}{2}}\right)\)
\(\Rightarrow D=5\left(\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{100.101}\right)\)
\(\Rightarrow D=10\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow D=10\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(\Rightarrow D=\frac{10}{3}-\frac{10}{101}=\frac{980}{303}\)
I don't now
or no I don't
..................
sorry
A = 1/2 . 2/3 . 3/4 . ... . 99/100
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
\(\frac{1}{2}.\frac{2}{3}.\)\(...\frac{99}{100}=\frac{1.2.....99}{2.3.....100}=\frac{1.\left(2.....99\right)}{\left(2.3.....99\right).100}=\frac{1}{100}\)
Phạm Phương Bảo Khuê . bạn giải chi tiết giúp mình với
Vậy mà còn không chi tiết mình chệu luôn , chỗ nào không chi tiết z.
Cho A=1+ 1/2+ 1/3+ 1/4+ ...+1/100.Hãy chứng minh rằng tổng A không là số tự nhiên?
Các bạn giúp mình với, mình cần gấp ạ!
https://hoc247.net/hoi-dap/toan-6/chung-minh-a-1-1-2-1-3-1-100-khong-phai-so-tu-nhien-faq442360.html
Em tk trang đó nha
Ta có
\(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
=> A > 1 do \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\ne0\)
\(\dfrac{1}{2}>\dfrac{1}{100}\)
\(\dfrac{1}{3}>\dfrac{1}{100}\)
................
\(\dfrac{1}{100}=\dfrac{1}{100}\)
=> \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}>\dfrac{1}{100}.99\) (do dãy có 99 số) = \(\dfrac{99}{100}\)
=> A < \(1+\dfrac{99}{100}< 1+\dfrac{100}{100}=1+1=2\)
=> 1 < A < 2
Vậy A không phải số tự nhiên