Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
The Moon
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 9 2021 lúc 7:03

\(b,B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\left(x\ge0;x\ne4;x\ne9\right)\\ B=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)

\(c,B< A\Leftrightarrow\dfrac{\sqrt{x}-4}{\sqrt{x}-2}< \dfrac{\sqrt{x}+1}{\sqrt{x}-2}\Leftrightarrow\dfrac{\sqrt{x}-4}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 0\\ \Leftrightarrow\dfrac{-5}{\sqrt{x}-2}< 0\Leftrightarrow\sqrt{x}-2>0\left(-5< 0\right)\\ \Leftrightarrow x>4\\ d,P=\dfrac{B}{A}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=\dfrac{\sqrt{x}-4}{\sqrt{x}+1}=1-\dfrac{5}{\sqrt{x}+1}\in Z\\ \Leftrightarrow5⋮\sqrt{x}+1\Leftrightarrow\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-6;-2;0;4\right\}\\ \Leftrightarrow x\in\left\{0;16\right\}\left(\sqrt{x}\ge0\right)\)

\(e,P=1-\dfrac{5}{\sqrt{x}+1}\)

Ta có \(\sqrt{x}+1\ge1,\forall x\Leftrightarrow\dfrac{5}{\sqrt{x}+1}\ge5\Leftrightarrow1-\dfrac{5}{\sqrt{x}+1}\le-4\)

\(P_{max}=-4\Leftrightarrow x=0\)

Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Hà Vy
29 tháng 11 2021 lúc 21:28

Nguyễn Hà Vy
29 tháng 11 2021 lúc 21:33

Không có mô tả.

Không biết nãy bị lỗi ở đâu, mình gửi lại:<

Naa.Khahh
Xem chi tiết
An Thy
29 tháng 6 2021 lúc 16:29

e) \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(x\ge-2\right)\)

\(\Rightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x+5}+\sqrt{x+2}\right)\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}\right)=3\left(\sqrt{x+5}+\sqrt{x+2}\right)\)

\(\Leftrightarrow3\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}\right)=3\left(\sqrt{x+5}+\sqrt{x+2}\right)\)

\(\Rightarrow1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)

\(\Rightarrow\sqrt{x+5}+\sqrt{x+2}-\sqrt{\left(x+2\right)\left(x+5\right)}-1=0\)

\(\Leftrightarrow\left(1-\sqrt{x+5}\right)\left(\sqrt{x+2}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}1=\sqrt{x+5}\\\sqrt{x+2}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

mà \(x\ge-2\Rightarrow x=-1\)

LưuTrung
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 11 2021 lúc 16:52

Bài 6:

Vì \(m^2+1>0\) nên hs nghịch biến trong khoảng \(\left(-\infty;2m\right)\)

Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 21:18

Bài 3:

6: \(x< 0\) nên \(y=\sqrt[3]{x}\) nghịch biến

Mang Phạm
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 4 2022 lúc 12:32

\(y'=3x^2-2\)

hệ số góc tiếp tuyến tại điểm có hoành độ \(x_0=-1\) là \(y'\left(-1\right)\)

\(y'\left(-1\right)=3.\left(-1\right)^2-2=1\)

Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2021 lúc 22:04

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

Nguyen Thu Huyen
Xem chi tiết
Vũ Đoàn
6 tháng 8 2017 lúc 18:39

bài nào zậy bạn

Nguyen Thu Huyen
8 tháng 8 2017 lúc 7:18

Câu 3 và caau4 bài giải phương trình nhé

Vũ Đoàn
8 tháng 8 2017 lúc 20:18

Bài 3. Đặt ẩn phụ là 

\(a=2x-\frac{5}{x}\\\)

\(b=x-\frac{1}{x}\)

pt <=> \(b-a=\sqrt{a}-\sqrt{b}\\ \)

\(\left(\sqrt{b}-\sqrt{a}\right)\left(\sqrt{b}+\sqrt{a}\right)=-\left(\sqrt{b}-\sqrt{a}\right)\\ \)

\(\left(\sqrt{b}-\sqrt{a}\right)\left(\sqrt{b}+\sqrt{a}+1\right)=0\)

tới đây xét 2 TH bạn tự giải nhé

Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 23:32

\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

Black Officall
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2023 lúc 21:26

e:

\(E=\left(\dfrac{\sqrt{15}-\sqrt{20}}{2-\sqrt{3}}+\dfrac{\sqrt{21}-\sqrt{7}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left(-\dfrac{\sqrt{5}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}-\dfrac{\sqrt{7}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\dfrac{\sqrt{7}-\sqrt{5}}{1}\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

f: \(F=\sqrt{3}+1+2-\sqrt{3}=3\)