cho tam giác ABC cân tại A, gọi M là trung điểm của BC. chứng minh AM là đường trung trực của BC
Cho tam giác ABC cân tại A. lấy điểm D thuộc AB, E thuộc AC sao cho AD = AE. Gọi M là trung điểm của BC
a/ Chứng minh tam giác ABM = tam giác ACM
b/ Chứng minh DE song song BC
c/ Chứng minh AM là đường trung trực của BC
tam giác ABC cân tại A gọi AM vuông góc với BC a)Chứng minh rằng M là đường trung trực của đoạn BC
b) Về phía ngoài tam giác ABC lấy điểm D sao cho DB = BC chứng minh A,M,d mặt thẳng hànga: ΔABC cân tại A
mà AM là đường cao
nên AM là trung trực của BC(1)
b: DB=DC
nên D nằm trên trung trực của BC(2)
(1), (2) =>A,M,D thẳng hàng
Cho tam giác abc cân tại a . M là trung điểm của bc . Mi vuông góc vs ab . Mk vuông góc vs ac. - chứng minh tam giác BIM = tam giác BKM - chứng minh AM là đường trung trực của BC - Tính BC biết Ab = 10 cm , AM =8cm
a)
Sửa đề: ΔBIM=ΔCKM
Xét ΔBIM vuông tại I và ΔCKM vuông tại K có
BM=CM(M là trung điểm của BC)
\(\widehat{IBM}=\widehat{KCM}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBIM=ΔCKM(cạnh huyền-góc nhọn)
Cho tam giác ABC cân tại A , M là trung điểm của cạnh BC , chứng minh rằng :
a) AM là đường trung tuyến của tam giác ABC
b) AM là đường phân giác góc A của tam giác đó
c) AM là đường trung trực của tam giác ABM
SOS mn cứu em!
a: M là trung điểm của BC
=>AM là đường trung tuyến của ΔABC
b: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
c: Sửa đề; tam giác ABC
AB=AC
BM=CM
=>AM là trung trực của BC
Cho tam giác ABC cân tại A . Gọi M là một điểm nằm trong tam giác sao cho MB=MC. N là trung điểm của BC . Chứng minh rằng
A) AM là tia phân giác của góc BAC
B) MN là đường trung trực của đoạn BC.
C) Ba điểm A,M,N thẳng hàng
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
b: MB=MC
NB=NC
=>MN là trung trực của BC(1)
c: AB=AC
=>A nằm trên trung trực của BC(2)
Từ (1), (2) suy ra A,M,N thẳng hàng
Cho tam giác ABC vuông tại A. Gọi N là trung điểm của AC. Đường trung trực của AC cắt BC tại điểm M. Chứng minh: tam giác MAB cân tại M
Cho tam giác ABC cân tại A có M là trung điểm của BC. Kẻ tia Mx // với BC cắt AB tại E và tia My // với AB cắt AC tại F. Chứng minh :
a) EF là đường trung bình của tam giác ABC
b) AM là đường trung trực của EF
Cho tam giác ABC cân tại A có M là trung điểm của BC. Kẻ Mx // AC cắt AB tại E, kẻ My // AB cắt AC tại F. Chứng minh rằng : a, EF là đường trung bình của tam giác ABC b, AM là đường trung trực của EF
a) Xét tam giác ABC có:
M là trung điểm BC(gt)
ME//AC(gt)
=> E là trung điểm AB
Xét tam giác ABC có:
M là trung điểm BC(gt)
MF//AB(gt)
=> F là trung điểm AC
Xét tam giác ABC có:
E là trung điểm AB(cmt)
F là trung điểm AC(cmt)
=> EF là đường trung bình
b) Xét tam giác ABC cân tại A có:
AM là đường trung tuyến(M là trung điểm BC)
=> AM là đường trung trực BC
=> AM⊥BC
Mà EF//BC(EF là đường trung bình)
=> EF⊥AM
Mà \(AE=AF=\dfrac{1}{2}AB=\dfrac{1}{2}AC\)
=> AM là đường trung trực EF
Cho tam giác ABC cân tại A. Gọi O là giao điểm của 2 đường trung trực của cạnh AB và AC.
a. Chứng minh AO là tia phân giác của góc A
b. Gọi M là giao điểm của AO và BC. Chứng minh AM đồng thời là đường trung tuyến, đồng thời là đường trung trực.
Vẽ hộ mk cái hình luôn nha!