a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
b: MB=MC
NB=NC
=>MN là trung trực của BC(1)
c: AB=AC
=>A nằm trên trung trực của BC(2)
Từ (1), (2) suy ra A,M,N thẳng hàng
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
b: MB=MC
NB=NC
=>MN là trung trực của BC(1)
c: AB=AC
=>A nằm trên trung trực của BC(2)
Từ (1), (2) suy ra A,M,N thẳng hàng
Cho tam giác ABC có AB=AC. Gọi M là một điểm nằm trong tam giác sao cho MB=MC. N là trung điểm của BC . Chứng minh rằng
A) AM là tia phân giác của góc BAC
B) MN là đường trung trực của đoạn BC.
C) Ba điểm A,M,N thẳng hàng.
cho tam giác ABC (AB>AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. a) Chứng minh tam giác ACM= tam giác DBM. b) Kẻ BE vuông góc với AM tại E. Trên tia MD lấy điểm F sao cho M là trung điểm của EF. Chứng minh CF vuông góc với AD. c) Trên tia FB lấy điểm G sao cho B là trung điểm FG. Gọi H là trung điểm của BE. Chứng minh ba điểm G,H,C thẳng hàng
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh AC, trên tia BM lấy điểm N sao cho M là trung điểm của đoạn BN. Chứng minh:
a) CN vuông góc với AC và CN = AB;
b) AN = BC và AN song song với BC.
Cho tam giác ABC có có AB = AC. Gọi D là trung điểm của cạnh BC. a) Chứng minh rằng : tam giác ABD bằng tam giác ACD b) Trên tia đối của tia DA, lấy điểm M sao cho MD = MA. Chứng minh: AB // CD.
Cho góc xoy nhọn. Trên ox lấy điểm A trên oy lấy điểm B sao cho OA=OB. Lấy hai điểm M,N đều thuộc miền trong của góc xoy sao cho MA=MB , NA=NB.
A) Chứng minh rằng OM là tia phân giác của góc xoy.
B) Chứng minh rằng ba điểm O,M,N thẳng hàng.
C) Chứng minh MN là tia phân giác của góc AMB.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy M , trên tia đối của CB lấy N sao cho BM = CN
a) CM : tam giác AMN cân
b. kẻ BE vuông góc AM (E thuộc AM),CF vuông góc AN . CM:tam giác BME= tam giác CNF
c.EB cắt FC tại O. CM: AO là phân giác của góc MAN
d.qua M kẻ vuông góc AM,qua N kẻ vuông góc AN 2 đường thẳng cắt nhau tại H . CM: A , O , H thẳng hàng
Bài 4: Cho góc xOy nhọn. Gọi Oz là tia phân giác của góc xOy. M là một điểm thuộc tia Oz (M khác O). I là trung điểm của OM. Kẻ đường thẳng qua I và vuông góc với Oz, đường thẳng này cắt Ox tại E và Oy tại F.
a) Chứng minh: OIE = MIE.
b) Chứng minh: EM = OF và EM//OF.
c) Gọi G, K lần lượt là trung điểm của EM và OF.
Chứng minh ba điểm: G, I, K thẳng hàng
Mai thi rồi, giúp mình với!
Cho Tam giác abc có ab=ac gọi d là trung điểm cạnh bc.Kẻ de vuông cóc với ab;df vuông góc với ac.Chứng minh
a)Chứng minh tam giác abd=tam giác acd
b)chứng minh ad là tia phân giác của góc bac
c)chứng minh tam giác aed=tam giác afd
d)chứng minh tam giác deb=tam giác dfc