cho tam giác ABC (AB>AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. a) Chứng minh tam giác ACM= tam giác DBM. b) Kẻ BE vuông góc với AM tại E. Trên tia MD lấy điểm F sao cho M là trung điểm của EF. Chứng minh CF vuông góc với AD. c) Trên tia FB lấy điểm G sao cho B là trung điểm FG. Gọi H là trung điểm của BE. Chứng minh ba điểm G,H,C thẳng hàng
Cho tam giác ABC có có AB = AC. Gọi D là trung điểm của cạnh BC. a) Chứng minh rằng : tam giác ABD bằng tam giác ACD b) Trên tia đối của tia DA, lấy điểm M sao cho MD = MA. Chứng minh: AB // CD.
Cho Tam giác abc có ab=ac gọi d là trung điểm cạnh bc.Kẻ de vuông cóc với ab;df vuông góc với ac.Chứng minh
a)Chứng minh tam giác abd=tam giác acd
b)chứng minh ad là tia phân giác của góc bac
c)chứng minh tam giác aed=tam giác afd
d)chứng minh tam giác deb=tam giác dfc
cho tam giác nhọn abc (ab<ac).gọi m là trung điểm của bc. trên tia đối của tia ma lấy điểm d sao cho ma=md a/ chứng minh ab song song cd b/ kẻ ah vuông góc bc (h thuộc bc). vẽ điểm e sao cho h là trung điểm của ae. chứng minh be=cd. c/ chứng minh tam giác bec=tam giác cdb
Cho Tam giác ABC cân tại A ,trên tia dối của tia CA lấy N sao cho CN =CA ,Trên tia đối của tia CB lấy M sao chO CM=CB kẻ AH vuông góc với BC,NK vuông góc với BC a) chứng minh AB//MN b) chứng minh tam giác ABH=tam giác NCK
Cho tam giác ABC có AB=AC. Gọi M là một điểm nằm trong tam giác sao cho MB=MC. N là trung điểm của BC . Chứng minh rằng
A) AM là tia phân giác của góc BAC
B) MN là đường trung trực của đoạn BC.
C) Ba điểm A,M,N thẳng hàng.
: Cho tam giác ABC có góc B = góc C . Trên tia đối của tia BC lấy điểm H và trên tia đối của tia CB lấy điểm K sao cho BH = CK. Chứng minh rằng: góc ABH= góc ACK
Cho tam giác ABC có AB = AC. Gọi H là trung điểm của cạnh BC.
A) Chứng minh rằng góc B=góc C
b) Chứng minh rằng AH là tia phân giác của góc BAC