Do M là trung điểm của BC
\(\Rightarrow MB=MC\) (1)
Xét ΔABM và ΔACM có:
\(AB=AC\) (vì ΔABC cân tại A)
\(\widehat{ABM}=\widehat{ACM}\) (vì ΔABC cân tại A)
\(AM\) là cạnh chung
\(\Rightarrow\text{Δ}ABM=\text{Δ}ACM\left(c.g.c\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng)
Mà: \(\widehat{AMB}+\widehat{AMC}=180^o\) (hai góc kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^o}{2}=90^o\) (2)
Từ (1) và (2) ⇒ AM là đường trung trực của ΔABC (đpcm)