Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duy đg học
Xem chi tiết
ILoveMath
1 tháng 9 2021 lúc 20:13

\(\sqrt{21-12\sqrt{3}}=\sqrt{21-2.\sqrt{36}.\sqrt{3}}=\sqrt{21-2\sqrt{108}}=\sqrt{12-2.\sqrt{12}.\sqrt{9}+9}=\sqrt{\left(\sqrt{12}-3\right)^2}=\sqrt{12}-3\)

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 21:13

\(\sqrt{21-12\sqrt{3}}=2\sqrt{3}-3\)

Huỳnh Thị Thanh Ngân
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 8:57

\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

ѕнєу
Xem chi tiết
Lê Thị Thục Hiền
8 tháng 6 2021 lúc 15:43

Có \(\left(x+y+z\right)^3-\left(x^3+y^3+z^3\right)\)

\(=\left[\left(x+y\right)+z\right]^3-\left(x^3-y^3-z^3\right)\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-\left(x^3+y^3+z^3\right)\)

\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Do x,y,z nguyên và cùng tính chẵn lẻ \(\Rightarrow\left(x+y\right);\left(y+z\right);\left(z+x\right)\) đều là ba số chẵn

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮8\)

mà (3;8)=1 và 3.8=24

\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮24\) (đpcm)

Nguyễn Đỗ Bảo Linh
Xem chi tiết
Mai Anh Nguyen
8 tháng 6 2021 lúc 15:45

Có (x+y+z)3−(x3+y3+z3)(x+y+z)3−(x3+y3+z3)

=[(x+y)+z]3−(x3−y3−z3)=[(x+y)+z]3−(x3−y3−z3)

=(x+y)3+3(x+y)2z+3(x+y)z2+z3−(x3+y3+z3)=(x+y)3+3(x+y)2z+3(x+y)z2+z3−(x3+y3+z3)

=3xy(x+y)+3(x+y)2z+3(x+y)z2=3xy(x+y)+3(x+y)2z+3(x+y)z2

=3(x+y)[xy+(x+y)z+z2]=3(x+y)[xy+(x+y)z+z2]

=3(x+y)[x(y+z)+z(y+z)]=3(x+y)[x(y+z)+z(y+z)]

=3(x+y)(y+z)(x+z)=3(x+y)(y+z)(x+z)

Do x,y,z nguyên và cùng tính chẵn lẻ ⇒(x+y);(y+z);(z+x)⇒(x+y);(y+z);(z+x) đều là ba số chẵn

⇒(x+y)(y+z)(z+x)⋮8⇒(x+y)(y+z)(z+x)⋮8

mà (3;8)=1 và 3.8=24

⇒3(x+y)(y+z)(z+x)⋮24⇒3(x+y)(y+z)(z+x)⋮24 (đpcm)

Khách vãng lai đã xóa
duong minh duc
Xem chi tiết
Lê Tài Bảo Châu
15 tháng 12 2019 lúc 23:01

sửa:\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\)

Áp dụng bđt AM-GM ta có:

\(\sqrt{\left(x+2y\right).1}\le\frac{x+2y+1}{2}\)

\(\sqrt{\left(y+2z\right).1}\le\frac{y+2x+1}{2}\)

\(\sqrt{\left(z+2x\right).1}\le\frac{z+2x+1}{2}\)

Cộng từng vế đẳng thức trên ta được:

\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le\frac{3\left(x+y+z\right)+3}{2}=3\)

Dấu"="xảy ra \(\Leftrightarrow x+2y=1;y+2z=1;z+2x=1;x=y=z;x+y+z=1\)

                       \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Vậy...

Khách vãng lai đã xóa
Ngọc Huyền
Xem chi tiết
Mr_Johseph_PRO
13 tháng 11 2021 lúc 7:51

C

Đan Khánh
13 tháng 11 2021 lúc 7:52

C

Chanh Xanh
13 tháng 11 2021 lúc 7:52

c

Lê Trần Ngọc Nghĩa
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 21:16

Em kéo xuống trang 40, mục số 3:

Một số mẹo nhỏ với Casio.pdf - Google Drive

Huỳnh Quang Huy
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 6 2019 lúc 17:35

\(\sqrt{2-2.\frac{1}{2}\sqrt{2}+\frac{1}{4}}.\sqrt{8-2.2\sqrt{2}.\frac{1}{4}+\frac{1}{16}}=\sqrt{\left(\sqrt{2}-\frac{1}{2}\right)^2}\sqrt{\left(2\sqrt{2}-\frac{1}{4}\right)^2}\)

\(=\left(\sqrt{2}-\frac{1}{2}\right)\left(2\sqrt{2}-\frac{1}{4}\right)=\frac{33-10\sqrt{2}}{8}\)

\(\sqrt{2+2\sqrt{2}+1}.4\sqrt{\frac{288+2\sqrt{288}+1}{16}}=\sqrt{\left(\sqrt{2}+1\right)^2}.4\sqrt{\frac{\left(12\sqrt{2}+1\right)^2}{4^2}}\)

\(=\left(\sqrt{2}+1\right)\left(12\sqrt{2}+1\right)=25+13\sqrt{2}\)

\(\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)

q duc
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2023 lúc 11:51

\(\sqrt[3]{15\sqrt{3}-26}=\sqrt[3]{-\left(26-15\sqrt{3}\right)}\)

\(=-\sqrt[3]{8-3\cdot2^2\cdot\sqrt{3}+3\cdot2\cdot3-3\sqrt{3}}\)

\(=-\sqrt[3]{\left(2-\sqrt{3}\right)^3}=-\left(2-\sqrt{3}\right)=-2+\sqrt{3}\)

 

q duc
25 tháng 8 2023 lúc 11:37

giúp mình với mình đang cần gấp