Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2.
A=4+22+23+....+220
2A=8+23+24+...+221
=> A+2A-A = (8+23+24+...+221) - (4+22+23+....+220)
=>A=221+8 - (22+4)=221
=>A là 1 lũy thừa của 2
Cho A=4+22+23+24+...+22002.Chứng minh rằng A là một luỹ thừa của 2
Giúp đi nhanh k cho
Cho A=4+22+23+24+...+22002. Chứng minh rằng A là một luỹ thừa của 2
giúp với nhanh kich cho
vậy nên mình mới hỏi chứ bỏ 23 đi thì mình tự giải cũng đc
Chứng minh rằng:
a) A là một luỹ thừa của 2 với A = 4 + 22 + 23 + ... + 220
b) 2B + 3 là một luỹ thừa của B với B = 3 + 32 + 33 + ... + 3100
a: \(A=4+2^2+2^3+...+2^{20}\)
=>\(2A=8+2^3+2^4+...+2^{21}\)
=>\(2A-A=2^{21}+2^{20}+...+2^4+2^3+8-2^{20}-2^{19}-...-2^3-2^2-4\)
\(=2^{21}+8-2^2-4=2^{21}\)
=>\(A=2^{21}\) là lũy thừa của 2
b:
\(B=3+3^2+3^3+...+3^{100}\)
=>\(3B=3^2+3^3+...+3^{101}\)
=>\(2B=3^{101}-3\)
=>\(2B+3=3^{101}\) là lũy thừa của 3
Cho C = 4 + 22 + 23 + .... + 22005. Chứng minh rằng C là một luỹ thừa của 2
Mình đang cần gấp! Làm giúp mình nha!? Ai làm đúng mình tick cho
Đặt A=22+23+..+22005
2A=23+24+..+22006
suy ra 2A-A=(23+24+..+22006) - (22+23+..+22005)
A=22006-22
suy ra C=4+22006-4
C=22006 .Là lũy thừa của 2 (đpcm)
C=4+22+23+...+22005
2C=8+23+24+...+22006
2C-C=(8+23+24+...+22006)-(4+22+23+...+22005)
C=4+22005-22
C=22-22+22005
C=22005(đpcm)
1 Chứng tỏ rằng
a) A + 1 là 1 luỹ thừa của 2 Biết A = 1 + 2 + 22 + ... + 280
b) 2B - 1 là 1 luỹ thừa của 3 Biết B = 1 + 3 + 32 + ... + 399
2 Tìm số tự nhiên x biết
a) 2x . ( 1 + 2 + 22 + 23 + ... = 22015 ) + 1 = 22016
b) 8x - 1 = 1 + 2 + 22 + 23 + ... + 22015
( giải chi tiết hộ mình với ạ Cảm ơn <3 )
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
A= 4 + 22 + 23 + ... + 22006
Chứng minh rằng A là 1 lũy thừa của cơ số 2
\(A=4+2^2+2^3+...+2^{2006}\)
\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)
Thay \(B=2^{2007}-4\) vào A, ta được:
\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)
$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.
Vậy: ...
cho A=4+23+24+25+...+220
chứng minh rằng A là một lũy thừa của 2
\(A=4+2^3+2^4+2^5+...+2^{20}\)
\(A=2^2+2^3+2^4+2^5+...+2^{20}\)
\(\Rightarrow2A=2^3+2^4+2^5+2^6+...+2^{21}\)
\(\Rightarrow2A-A=\left(2^3+2^4+2^5+2^6+...+2^{21}\right)-\left(2^2+2^3+2^4+2^5+...+2^{20}\right)\)
\(\Rightarrow A=2^{21}-2^2\)
\(=2^2\left(2^{19}-1\right)\)
Vậy A là một lũy thừa của 2.
#kễnh
Chứng minh rằng A là một lũy thừa của 2, biết: A = 4 + 22 + 23 + 24 + …+ 220
làm được mình tick
Ôi bạn ơi dễ lắm.
Câu 9: Năm nay tổng số tuổi của hai ông cháu là 85 tuổi. Ông hơn cháu 61 tuổi. Hiên nay tuổi ông là:
Giải giúp mình với plaeeeeeeeeeeeeeeeeeeeee