Chứng minh rằng :
\(1.4+2.4^2+3.4^3+4.4^4+5.4^5+6.4^6⋮3\)
1)CMR
B= 3+3 ^ 3 + 3^5 +...+ 3^1991 chia hết cho 13
C= 3+ 3^3 + 3^5 +3^7 +... + 3^2n-1 chia hết cho 30
2)Cmr
1.4.+2.4^2 + 2. 4^3+4.4^4+5.4^5+6.4^6 chia hết cho 3
Bài 1 Tính giá trị biểu thức :
A = 3/1.4 + 5/4.9 + 7/9.16 + 9/16.25 + 11/25.36
B = 3/1.4 + 3/4.7 + ... + 3/100.103
C = 3/1.4 + 6/4.10 + 9/10.19 + 12/19.31 + 15/31.46 + 18/46.64
Bài 2 Chứng minh rằng :
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + ... + 1/50
Bài 1:
\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)
\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)
\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)
\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)
2^2.4^4.2^6.2.2=
2.2^3.2^7.2^4=
3^2.3=
3^4.3^3.3=
3.3^5.3^4.3^2=
3.3^6.3^7.3^4=
4.4^3=
4^5.4.4^7=
4.4^3.4^5.4^6=
5.5^6
5.5^4=
5.5^2.5^4=
5.5^3.5^4.5^6=
5.5^6.5^4.5^3=
x.x^2
x.x^3.x^5=
a.a^4
a.a^2.a^4.a^5.a^7=
a.a^3.a^5.a^6
a^4.a.a^5.a^6.a=
x.x^3.x^4=
x^5.x^4.x.x^7.x^6=
7.7^2=
7.7^2.7^4.7^5=
7^3.7^5.7.7^4=
7^2.7.7^6.7^6.7^3=
10.10^2=
10.10^2=
10.100.10^3=
10.100.10^4.1000=
10^2.10^4.100.1000=
làm ơn giúp mình ,bạn nào làm nhanh đúng mình chọn cho nhanh nha mọi người
Bài làm
22.44.26.2.2=22.28.26.22=218
2.23.27.24=215
32.3=33=27
34.33.3=38
3.35.34.32=312
3.36.37.34=318
4.43=44
45.4.47=413
4.43.45.46=415
5.56=57
5.54=55
5.52.54=57
5.53.54.56=514
5.56.54.53=514
x.x2=x3
x.x3.x5=x9
a.a4=a5
a.a2.a4.a5.a7=a19
a.a3.a5.a6=a15
a.a4.a.a5.a6.a=a18
x.x3.x4=x8
x5.x4.x.x7.x6=x23
7.72=73
7.72.74.75=712
73.75.74.7=713
72.7.76.76.73=718
10.102=103
10.100.103=106
10.100.104.1000=1010
102.104.100.1000=1011
Tk nha !
\(4.4^1.4^3.4^5......4^{57}\)
\(3+3^{2^{ }}+3^3+3^4+........+3^{100}\)
Để đánh số một cuốn sách có 386 trang thì cần dùng bao nhiêu chữ số
\(A=4.4^1.4^3.4^5.....4^{57}=4^{1+3+5+...+57}=4^{\left[\left(\dfrac{57-1}{2}\right)+1\right]:2\left(57+1\right)}=4^{841}\)\(B=3+3^2+3^3+3^4+...+3^{100}\)
\(3B=3\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(3B=3^2+3^3+3^4+3^5+...+3^{101}\)
\(3B-B=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4....+...+3^{100}\right)\)
\(2B=3^{101}-3\Leftrightarrow B=\dfrac{3^{101}-3}{2}\)
2)
Từ \(1\rightarrow9\) có: \(\left(9-1\right):1+1=9\)(chữ số)
Từ \(10\rightarrow99\) có:\(2\left[\left(99-10\right):1+1\right]=180\)(chữ số)
Từ \(100\rightarrow386\) có:\(3\left[\left(386-100\right):1+1\right]=816\)(chữ số)
Như vậy,Để đánh số trang từ \(1\rightarrow386\) thì cần:
\(9+180+816=1005\)(chữ số)
Tính
a, -27^3.4^10.81^2 / 3^12.8^6
b,12^3. (-125)^2 / (-5)^7.2^6.9
c,)1^1.2^2.3^3.4^4 / 2^3.3^4.4^5) . 6!
Có cả cách giải =='
Tính các tổng sau
1 :D = 1.3 +2.3+3.4+........+99.100
2 . E= 1.3 +3.5+5.7+.........+97.99
3.F= 2.4 + 4.6+ 6+8+..........+98.1009
4. G=1.4+2.5+3.6+........+97.100
Giúp mình nhé . Mình cần gấp
A=1/2.3+1/3.4+...+1/99.100
B+5/1.4+5/4.7+...+5/100.103
C=4/2.4+4/4.6+4/6.8+....+4/2008.2010
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(2A=\frac{1}{1}-\frac{1}{100}\)
\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)
Câu B và C làm tương tự.
bạn Nhi làm sai rồi
\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được
\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)
kết quả là : \(\frac{49}{100}\)
A,3.x - 16 : 2^3= 31; B,2^10 : 2^8 + 3. [4. 7 + 3.4 ] ; C,4^6 : 4^3 - 2^2 . 2^3; D,141 + 2^5 . 2^4 - 3^1 . 3^2 ; E,x + 2^5 : 2^4 = 4.4^2 giúp mình với
`3x-16:2^3=31`
`=>3x-16:8=31`
`=>3x-2=31`
`=>3x=31+2`
`=>3x=33`
`=>x=11`
__
`2^10:2^8+3[4.7+3.4]`
`=2^2+3[4(3+7)]`
`=4+3[4.10]`
`=4+3.40`
`=4+120`
`=124`
__
`4^6:4^3-2^2 . 2^3`
`=4^3-2^5`
`=64-32`
`=32`
__
`141+2^5 . 2^4-3^1 . 3^2`
`=141+2^9-3^3`
`=141+512-9`
`=644`
__
`x+2^5:2^4=4.4^2`
`=>x+2=4^3`
`=>x=64-2`
`=>x=62`
tính
a) P = 1 / 1.2 + 2 / 2.4 + 3 / 4.7 + ...+ 10 / 46.56
b) A= 3 / 1.2 + 3 / 2.3 + 3 / 3.4 + ....+ 3 / 99.100 chú ý : / là phần nha
c) B = 3 / 1.4 + 3 / 4.7 + 3 / 7.10 + ... + 3 / 100.103
d) C= 5 / 1.4 + 5 / 4.7 + 5 / 7.10 + ...+ 5 / 100.103
e) D= 7 / 1.5 + 7 / 5.9 + 7 / 9.13 +...+ 7 / 101.105
a) \(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...\dfrac{10}{46.56}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...\dfrac{1}{46}-\dfrac{1}{56}\)
\(P=1-\dfrac{1}{56}\)
\(P=\dfrac{55}{56}\)
b) \(A=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{99.100}\)
\(A=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(A=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=3\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}\)
\(A=\dfrac{297}{100}\)
c) \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)
\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(B=1-\dfrac{1}{103}\)
\(B=\dfrac{102}{103}\)
d) \(C=\dfrac{5}{1.4}+\dfrac{5}{4.7}+\dfrac{5}{7.10}+...+\dfrac{5}{100.103}\)
\(C=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\right)\)
\(C=\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(C=\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)
\(C=\dfrac{5}{3}.\dfrac{102}{103}\)
\(C=\dfrac{170}{103}\)
e) \(D=\dfrac{7}{1.5}+\dfrac{7}{5.9}+\dfrac{7}{9.13}+...+\dfrac{7}{101.105}\)
\(D=\dfrac{7}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{101.105}\right)\)
\(D=\dfrac{7}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{101}-\dfrac{1}{105}\right)\)
\(D=\dfrac{7}{4}\left(1-\dfrac{1}{105}\right)\)
\(D=\dfrac{7}{4}.\dfrac{104}{105}\)
\(D=\dfrac{26}{15}\)