Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Huy
Xem chi tiết
Nguyễn Huy Tú
21 tháng 7 2021 lúc 19:09

undefined

Huỳnh Thị Thanh Hằng
Xem chi tiết
Tuấn Phạm Minh
Xem chi tiết
zZz Phan Cả Phát zZz
14 tháng 2 2017 lúc 21:20

Theo bài ra , ta có : 

\(2x^2+2y^2+2x+2y+2xy=0\)

\(\Rightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}\Leftrightarrow x=y=-1}\)

Thay x = y = -1 vào A ta được : 

\(A=\left(x+2\right)^{2016}+\left(y+1\right)^{2017}\)

\(\Leftrightarrow A=\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}=1^{2016}+0=1\)

Vậy A=1 

Chúc bạn học tốt =)) 

Tuấn Phạm Minh
Xem chi tiết
Lưu Hiền
14 tháng 2 2017 lúc 21:10

2x2 + 2y2 + 2x + 2y + 2xy = 0

<=> (x+y)2 + (x+1)2 +(y+1)2 = 0

<=> \(\left\{\begin{matrix}\left(x+y\right)^2=0\\\left(x+1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\) <=> x = y = -1

thay x = y = -1 vào A ta được

(-1 + 2)2016 + (-1 + 1)2017 = 12016 = 1

chúc may mắn!!

Nguyễn Võ Đình Thông
Xem chi tiết
Lam Ngo Tung
29 tháng 12 2019 lúc 14:15

Theo đề bài : 2x2 + 2y2 + 2xy - 2x + 2y + 2 = 0

\(\Rightarrow\) ( x2 + 2xy + y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) = 0

( x + y )2 + ( x - 1 )2 + ( y + 1 )2 = 0

Ta thấy : \(\left(x+y\right)^2\ge0;\forall x,y\in R\)

\(\left(x-1\right)\ge0;\forall x\in R\)

\(\left(y+1\right)^2\ge0;\forall y\in R\)

\(\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0;\forall x,y\in R\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\left(\text{Thỏa mãn}\right)\)

Thay \(x=1\)\(y=-1\) vào \(A=\left(x-2\right)^{2017}+\left(y+1\right)^{2018}\) , ta được :

\(A=\left(x-2\right)^{2017}+\left(y+1\right)^{2018}\)

\(A=\left(1-2\right)^{2017}+\left(-1+1\right)^{2018}\)

\(A=-1+0\)

\(A=-1\)

Vậy \(A=-1\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2+2xy-2x+2y+2=0\\x=1\\y=-1\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Minh Hoàng
Xem chi tiết
Trai Vô Đối
4 tháng 7 2017 lúc 21:39

b,\(x^2+2y^2+2xy-2y+1=0\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=\left(x+y\right)^2+\left(y-1\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

CÂU c,MÌNH K BÍT LÀM

a,\(x^2-4x+5+y^2+2y=0\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

nguyễn thảo hân
Xem chi tiết
nguyentancuong
11 tháng 7 2017 lúc 23:36

a/ (x^2-4x+4)+(y^2+2y+1)=0

<=> (x-2x)^2+(y+1)^2 = 0 Vậy x=2 và y = -1

b/ (x^2+2xy+y^2) + ( y^2-2y+1) = 0 

<=> (x+y)^2 + (y-1)^2 = 0 Vậy x=y=1 

Nguyễn Duy Cường
12 tháng 7 2017 lúc 6:00

a) { x^2 - 4x +4 } +{y^2+2x+1}=0

<=>{ x - 2x}^2+{y+1}^2=0 Vậy x =2 vầy =-1

b) { x^2 +2xy +y^2} +{y^2 - 2y +1=0}

<=> {x+y}^2+{ y - 1 }^2 =0 Vậy x=y=1.

NHA BẠN!

Sick
Xem chi tiết
Đặng Đình Tùng
21 tháng 8 2021 lúc 15:44

Đơn thức đồng dạng là đơn thức có hệ số khác 0 và cùng phần biến

-> Đáp án B ( Vì hệ số khác 0 và cùng phần biến là x^{2}y )

Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 23:09

Chọn B

Nguyễn Thị Bích Thảo
Xem chi tiết
Minh Thư
5 tháng 10 2019 lúc 20:59

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

Minh Thư
5 tháng 10 2019 lúc 21:02

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

Edogawa Conan
5 tháng 10 2019 lúc 21:02

a) 2x2 + y2 + 2xy + 10x + 25 = 0

=> (x2 + 2xy + y2) + (x2 + 10x + 25) = 0

=> (x + y)2 + (x + 5)2 = 0 

    <=> \(\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\) <=> \(\hept{\begin{cases}y=-x\\x=-5\end{cases}}\) <=> \(\hept{\begin{cases}y=5\\x=-5\end{cases}}\)

b)c) xem lại đề