(x-1)2=16
hép mi
Tìm GTNN của biểu thức x^2+y^2+2x+4y+16
HÉP MI
Đặt \(A=x^2+y^2+2x+4y+16\)
\(A=\left(x^2+2x+1\right)+\left(y^2+4y+4\right)+11\)
\(A=\left(x+1\right)^2+\left(y+2\right)^2+11\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow A\ge11\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)
Vậy \(A_{Min}=11\Leftrightarrow\left(x;y\right)=\left(-1;-2\right)\)
Ét o ét🆘
C=1/(-5)+1/(-5)^2+1/(-5)^3+…+1/(-5)^99
(x-3y)^2006+(y+4)^2008=0
Hép mi hép mi
\(C=\dfrac{-1}{5}+\left(\dfrac{1}{-5}\right)^2+\left(-\dfrac{1}{5}\right)^3+...+\left(-\dfrac{1}{5}\right)^{99}\)
=>\(5\cdot C=-1+\left(-\dfrac{1}{5}\right)+\left(-\dfrac{1}{5}\right)^2+...+\left(-\dfrac{1}{5}\right)^{98}\)
=>\(5\cdot C-C=\left(-1\right)-\left(-\dfrac{1}{5}\right)^{99}\)
=>\(4C=-1+\dfrac{1}{5^{99}}=\dfrac{-5^{99}+1}{5^{99}}\)
=>\(C=\dfrac{-5^{99}+1}{4\cdot5^{99}}\)
(x-3y)^2006+(y+4)^2008=0
=>x-3y=0 và y+4=0
=>x=3y và y=-4
=>x=3*(-4)=-12 và y=-4
Cho (x+1)2+|x+y+2|<0.Tính C=x2019-y2020
hép mi pờ li 😭😭
pờ ni hép mi <3
\(2x^2+2x+5=\left(4x-1\right)\sqrt{x^2+3}\)
Em không chắc đâu:
ĐK: \(x>\frac{1}{4}\)
\(PT\Leftrightarrow2x^2+2x+5+\left(4x-1\right)\left(2x-1-\sqrt{x^2+3}\right)-\left(4x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow-6x^2+8x+4+\left(4x-1\right)\left(\frac{\left(2x-1\right)^2-x^2-3}{2x-1+\sqrt{x^2+3}}\right)=0\)
\(\Leftrightarrow-2\left(3x^2-4x-2\right)+\frac{\left(4x-1\right)\left(3x^2-4x-2\right)}{2x-1+\sqrt{x^2+3}}=0\)
\(\Leftrightarrow\left(3x^2-4x-2\right)\left(-2+\frac{4x-1}{2x-1+\sqrt{x^2+3}}\right)=0\)
Dễ thấy cái ngoặc to luôn < 0 (cái này em cũng không biết giải thích thế nào nữa,để em từ từ xem lại ạ)
Nên \(3x^2-4x-2=0\Rightarrow\orbr{\begin{cases}x=\frac{2+\sqrt{10}}{3}\left(C\right)\\x=\frac{2-\sqrt{10}}{3}\left(L\right)\end{cases}}\)
Vậy...
tth_new làm sai rồi. Sửa đề :\(2x^2-2x+5=\left(4x-1\right)\sqrt{x^2+3}\)
Đặt \(\sqrt{x^2+3}=t\)
\(\Rightarrow2t^2=2x^2+6\)
Thay vào pt:\(2x^2+6-2x-1=\left(4x-1\right)t\)
\(\Leftrightarrow2t^2-2x-1=4xt-t\)
\(\Leftrightarrow2t^2-2x-1-4xt+t=0\)
\(\Leftrightarrow t\left(2t+1\right)-2x\left(2t+1\right)=1\)
\(\Leftrightarrow\left(t-2x\right)\left(2t+1\right)=1\)
Lập bảng là ra
๖²⁴ʱphạmtuấnĐͥ�ͣ�ͫt༉( Team TST 18 ) sai chỗ nào vậy ạ? à mà đề đúng mà đâu cần sửa -__-"
c, (x - 2)2 - x(x-1).(x+1) + 6x.(x +3) = 22
d, (x+2) . (x2 - 2x+4) - x(x2 +2) = 15
Mọi người ơi hép mi !!!!
Đặt câu cới từ vegetables
Hép mi×2
We have to eat more vegetables and fruits
1. Vegetables are an essential part of a healthy diet.
2. I enjoy cooking with a variety of vegetables to create flavorful and nutritious meals.
giúp t , hép mi t vô dtuyen tón mà khó qa
câu 1 với n ϵ N* ta có định nghĩa sau n! = 1 x 2 x 3 x ... x n , vậy tổng S = 1! + 2! + 3! + .... + 2023! có chia hết cho 5 không , vì sao ?
\(S=1!+2!+3!+...+2023!\)
Ta thấy :
\(1!+2!+3!+4!=1+2+6+24=33\) không chia hết cho \(5\)
\(5!+6!+7!+8!+9!=\overline{.....5}⋮5\)
\(10!+11!+12!+...+2023!=\overline{.....0}⋮5\)
Vậy \(S=1!+2!+3!+...+2023!\) không chia hết cho \(5\)
Hép mi:
hép mi
a: \(=\left(4+\dfrac{3}{4}+\dfrac{1}{8}+3+\dfrac{1}{12}\right)+\left(-0.37-1.28-2.5\right)=\dfrac{191}{24}-\dfrac{83}{20}=\dfrac{457}{120}\)
b: \(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{56}{305}=\dfrac{84}{305}\)