Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
long bi
Xem chi tiết
Lô Vỹ Vy Vy
Xem chi tiết
Ann
10 tháng 11 2017 lúc 16:31

\(x^2-2-2\sqrt{4x-7}=0\)

\(\Leftrightarrow\left(4x-7-2\sqrt{4x-7}+1\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(\sqrt{4x-7}-1\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{4x-7}-1=0\\x-2=0\end{matrix}\right.\)

Tự làm tiếp nhé.

. . .

\(4x^2-5x+1+2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)+2\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left[\left(4x-1\right)\sqrt{x-1}+2\right]=0\)

\(\Rightarrow x=1\)

. . .

\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow\left|x-2\right|+\left|x-3\right|=1\)

\(VT=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1=VP\)

Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)

Đến đây lập bảng xét dấu

. . .

\(x^2-x+2=2\sqrt{x^2-x+1}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+1}-1\right)^2=0\)

Tự làm tiếp nhé.

Ann
10 tháng 11 2017 lúc 16:59

\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)

\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14-5\right)=0\)

\(\Leftrightarrow\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)\left(x-5\right)=0\)

\(\Rightarrow x=5\)

. . .

\(\sqrt{2x^2-4x+5}-x+4=0\)

\(\Leftrightarrow\sqrt{2x^2-4x+5}=x-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\2x^2-4x+5=x^2-8x+16\end{matrix}\right.\)

Tự làm tiếp nhé.

. . .

\(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)

\(\Leftrightarrow\sqrt{2x+3}=\sqrt{x+6}-\sqrt{x-1}\)

\(\Leftrightarrow2x+3=x+6-2\sqrt{\left(x+6\right)\left(x-1\right)}+x-1\)

\(\Leftrightarrow2\sqrt{x^2+5x-6}=2\)

\(\Leftrightarrow x^2+5x-6=1\)

Tự làm tiếp nhé.

. . .

\(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\left(y-\sqrt{y}+\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\left(\sqrt{y}-\dfrac{1}{2}\right)^2=0\)

Tự làm tiếp nhé.

Ann
10 tháng 11 2017 lúc 20:59

- Lô Vỹ Vy Vy Nếu câu hỏi liên quan đến hình học, thì mỗi lần đăng một câu thôi, nếu câu hỏi liên quan đến đại số và số học thì có thể đẳng 3 - 4 câu một lần. Lần sau đừng đăng dày đặc như thế này nữa.

Nguyễn Thị Thu Sương
Xem chi tiết
Hoàng Anh Thư
24 tháng 7 2019 lúc 20:14

Hỏi đáp Toán

Trịnh Bảo Minh
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
24 tháng 4 2020 lúc 17:07

ĐK : | x| \(\ge\sqrt{7}\)

x + 4x - 7 = ( x + 4 ) \(\sqrt{x^2-7}\)

\(\Leftrightarrow\left(x^2-7\right)+4x-\left(x+4\right)\sqrt{x^2-7}=0\)

\(\Leftrightarrow\left(x^2-7\right)+4x-x\sqrt{x^2-7}-4\sqrt{x^2-7}=0\)

\(\Leftrightarrow\sqrt{x^2-7}\left(\sqrt{x^2-7}-x\right)-4\left(\sqrt{x^2-7}-x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2-7}-x\right)\left(\sqrt{x^2-7}-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-7}-x=0\\\sqrt{x^2-7}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-7}=x\\\sqrt{x^2-7}=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2-7=x^2\\x^2-7=16\end{cases}}}\)

<=> x2 =23 <=> x = \(\pm\sqrt{23}\)( T/m đk)

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 4 2020 lúc 10:57

Có thể đặt \(t=\sqrt{x^2-7}\left(t\ge0\right)\)cho dễ nhìn

Khách vãng lai đã xóa
An Đinh Khánh
Xem chi tiết
HT.Phong (9A5)
27 tháng 6 2023 lúc 14:17

a) \(\sqrt{1-4x+4x^2}=5\) 

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)

\(\Leftrightarrow\left|1-2x\right|=5\)

\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

b) \(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2=3x-1}\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

\(\Leftrightarrow x+3=3x-1\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

YangSu
27 tháng 6 2023 lúc 14:24

\(a,\sqrt{1-4x+4x^2}=5\\ \Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\\ \Leftrightarrow\left|1-2x\right|=5\)

\(TH_1:x\le\dfrac{1}{2}\)

\(1-2x=5\\ \Leftrightarrow x=-2\left(tm\right)\)

\(TH_2:x\ge\dfrac{1}{2}\)

\(-1+2x=5\\ \Leftrightarrow x=3\left(tm\right)\)

Vậy \(S=\left\{-2;3\right\}\)

\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left|x+3\right|=3x-1\)

\(TH_1:x\ge-3\\ x+3=3x-1\\ \Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)

\(TH_2:x< 3\\ -x-3=3x-1\\ \Leftrightarrow-4x=2\\ \Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)

Vậy \(S=\left\{2;-\dfrac{1}{2}\right\}\)

Lê Minh Tú
Xem chi tiết
Tuân Tỉn
Xem chi tiết
Nguyễn Thị Ngọc Thơ
25 tháng 7 2018 lúc 21:56

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)

_Với x<1 \(\Rightarrow1-x-x+2=3\)

\(\Rightarrow3-2x=3\)

\(\Rightarrow x=0\) (t/m)

_Với \(1\le x< 2\Rightarrow x-1+2-x=3\)

\(\Rightarrow0x=2\) (Vô lý)

_Với x>2 \(\Rightarrow x-1+x-2=3\)

\(\Leftrightarrow2x=6\Leftrightarrow x=3\) (t/m)

Vậy x=0 hoặc x=6.

Nhã Doanh
25 tháng 7 2018 lúc 21:58

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1+x-2=3\\1-x+2-x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\3-2x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

Ngọc Vũ
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 10 2021 lúc 17:58

ĐKXĐ: \(x\ge1\)

\(pt\Leftrightarrow\sqrt{\left(2x-1\right)^2}=x-1\Leftrightarrow\left|2x-1\right|=x-1\)

\(\Leftrightarrow2x-1=x-1\left(do.x\ge1\right)\)

\(\Leftrightarrow x=0\left(ktm\right)\)

Vậy \(S=\varnothing\)

:>>>
25 tháng 10 2021 lúc 18:04

ĐK \(x\ge1\)

\(\Leftrightarrow\left|2x-1\right|=x-1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x-1\\2x-1=1-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{2}{3}\left(ktm\right)\end{matrix}\right.\)

Lê Anh Ngọc
Xem chi tiết