1.x-2xy+4y=7
2.3x+2xy-6y=10
3.4xy-3x+y=8
Tìm bậc của các đa thức sau:
a) \(x^3y^3+6x^2y^2+12xy-8
\)
b) \(x^2y+2xy^2-3x^3y+4xy^5\)
c) \(x^6y^2+3x^6y^3-7x^5y^7+5x^4y\)
d) \(2x^3+x^4y^5+3xy^7-x^4y^5+10-xy^7\)
e) \(0,5x^2y^3+3x^2y^3z^3-a.x^2y^3-x^4-x^2y^3\) với a là hằng số
a, bậc 6
b, bậc 6
c, bậc 12
d, bậc 9
e, bậc 8
Tìm GTNN của F=y^2-2xy+3x^2+2y-14x+194x
E+x^2+4y^2-2xy-6y-10*(x-y)+32
Tìm gtln và gtnn a) M=10x2 + 6y + 4y2 + 4xy + 2 b) H= -x2 + 2xy - 4y2 + 2x + 10y - 8 c) K= 2x2 + 2xy - 2x + 2xy + y2
a) \(M=10x^2+6y+4y^2+4xy+2\)
\(=\left(10x^2+4xy+\dfrac{2}{5}y^2\right)+\left(\dfrac{18}{5}y^2+6y+\dfrac{5}{2}\right)-\dfrac{1}{2}\)
\(=10\left(x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)+\dfrac{18}{5}\left(y^2+\dfrac{5}{3}y+\dfrac{25}{36}\right)-\dfrac{1}{2}\)
\(=10\left(x+\dfrac{1}{5}y\right)^2+\dfrac{18}{5}\left(y+\dfrac{5}{6}\right)^2-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{5}y=0\\y+\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
b) \(H=-x^2+2xy-4y^2+2x+10y-8\)
\(=-x^2+2x\left(y+1\right)-\left(y^2+2y+1\right)-\left(3y^2-12y+7\right)\)
\(=-x^2+2x\left(y+1\right)-\left(y+1\right)^2-3\left(y^2-4y+4\right)+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
c) \(K=2x^2+2xy-2x+2xy+y^2\)
bn xem lại cái đề nhé, sao lại có 2 lần 2xy
Chứng minh rằng không có các số x, y thỏa mãn: a) 2x² + 3x + 5 = 0 b) x² + y² - 2x - 4y + 6 = 0 c) x² + 2y² - 2xy + 2x - 6y + 10 = 0
a)\(2x^2+3x+5=0\)
\(\Leftrightarrow4x^2+6x+10=0\)
\(\Leftrightarrow\left(2x\right)^2+2.2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}=0\)
\(\Leftrightarrow\left(2x+\dfrac{3}{2}\right)^2=-\dfrac{31}{4}\left(vn\right)\)
b) PT \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=-1\left(vn\right)\) ( do \(VT\ge0\forall x,y\) )
c) PT \(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2+2x-6y+10=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1+y^2-4y+4+5=0\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=-5\left(vn\right)\)
Vậy PT vô nghiệm
a: 2x^2+3x+5=0
=>x^2+3/2x+5/2=0
=>x^2+2*x*3/4+9/16+31/16=0
=>(x+3/4)^2+31/16=0(vô lý)
b: x^2-2x+y^2-4y+6=0
=>x^2-2x+1+y^2-4y+4+1=0
=>(x-1)^2+(y-2)^2+1=0(vô lý)
biểu thức không phụ thuộc vào biến (3x-6y)(x^2+2xy+4y^2)-3(x^3-8y^3+12)
( Lớp 7 lên 8 nên nhờ mọi người giải giúp )
\(\left(3x-6y\right)\left(x^2+2xy+4y^2\right)-3\left(x^3-8y^3+12\right)\)
\(=3\left(x-2y\right)\left(x^2+2xy+4y^2\right)-3\left(x^3-8y^3+12\right)\)
\(=3\left(x^3-8y^3\right)-3\left(x^3-8y^3+12\right)\)
=-36
CMR:x^2+4y^2+9>=2xy+3x+6y với mọi x,y
Tính giá trị của mỗi đa thức trong các trường hợp sau :
A)x^2+2xy-3x^3+2y^3+3x^3-y^3 tại x = 5 và y = 4
b)xy - x2^2y^2 + x^4y^4 - x^6y^6 + x^8y^8 tại x = -1 và y = -1
a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)
b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)
tìm gtnn (gtln) của:
a) A= 4x2-4x+10 b) B= 2x2-3x-1
c) C= 4x2+2y2+4xy+4x+6y+1 d) D= (3x-1)2-4(3x-1)x+4x2
e) G= 9x2+2y2+6xy+4y+5 f) H= 2x2+3y2-2xy+4y+2x+5
g) K= xy+yz+zx; biết x+y+z= 3
nhờ mn giúp mik vs nha
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
Giúp em bài toán này với !
Bài 1 : Tìm các số nguyên x, biết:
a) xy- 5x + y = 17
b )3x + 4y - xy = 15
c) 2xy + x - 6y = 10
ta có : a) xy- 5x + y = 17
=) x . ( y - 5 ) . ( y - 5 ) = 17 - 5
=) (x+1) . ( y - 5 ) = 12
=) x + 1 \(\in\) { 12 ; 6 ; 3 ; 2 ; 1 ; 4 }
=) x \(\in\){ 11 ; 5 ; 2 ;1 ; 0 ; 3 }
=) y - 5 \(\in\){ 12 ; 6 ; 3 ; 2 ; 1 ; 4 }
=) y \(\in\){ 17 ; 11 ; 8 ; 7 ; 6 ; 9 }
vậy ta có 6 TH x,y là : ( 0 ; 17 ) , ( 1 ; 11 ) , ( 2 ; 9 ) , ( 11 ; 6 ) , ( 5 ; 7 ) , ( 3 ; 8 )
Bài giải
a) xy - 5x + y = 17
x(y - 5) + y = 17
x(y - 5) + y - 5 = 17 - 5 = 12
x(y - 5) + (y - 5) = 12
x(y - 5) + 1(y - 5) = 12
(x + 1)(y - 5) = 12
Bạn tự làm tiếp nha, xem số nào nhân với số nào bằng 12 rồi làm tiếp.
b) 3x + 4y - xy = 15
3x + (4y - xy) = 15
3x + y(4 - x) = 15
12 - [3x + y(4 - x)] = 12 - 15 = -3
12 - 3x - y(4 - x) = -3 (12 - 3x = 3.4 - 3x = 3(4 - x))
3(4 - x) - y(4 - x) = -3
(3 - y)
(3 - y)(4 - x) = -3
Tự làm tiếp
c) 2xy + x - 6y = 10
x(2y + 1) - 6y = 10
x(2y + 1) - 6y - 3 = 10 - 3 = 7
x(2y + 1) - (6y + 3) = 7 [(6y + 3 = 3.2y + 3.1 = 3(2y + 1)]
x(2y + 1) - 3(2y + 1) = 7
(x - 3)(2y + 1) = 7
Tự làm tiếp