tại sao a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc vậy mn
Chứng minh: (a+b+c) . (a^2 +b^2+c^2-ab-bc-ca)=a^3+b^3+c^3-3abc
Chứng minh rằng: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=a^3+b^3+c^3-3abc\)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+3ab\left(a+b\right)+b^3\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (1)
Thay (1) vào ta được
\(\left(a^3+b^3+c^3\right)-3ab=\left(a^3+b^3\right)+c^3-3ab\)
\(=\left(a^3+b^3\right)+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Áp dụng a^3+b^3+c^3+3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
Biết 1/a+1/b+1/c=0
Tính A=bc/a^2 + ca/b^2 +ab/c^2
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)
\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)
Ta có
\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)
\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)
\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)
\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
Rút gọn biểu thức :
A=(a^3+b^3+c^3-3abc)/(a^2+b^2+c^2-ab-bc-ca)
- Phân tích ra nhân tử :
\(a^3+b^3+c^3-3abc=a^3+b^3+c^3+3a^2b-3ab^2+3ab^2-3ab^2-3abc\)\(=a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Từ đây ta có \(A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(\Rightarrow A=a+b+c\)
Cho a^3 + b^3 + c^3 = 3abc . Tính số trị biểu thức : N=bc/a^2+ca/b^2+ab/c^2.
Áp dụng hằng đẳng thức
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Do \(a^3+b^3+c^3=3abc\) nên \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0.\)
Do đó : \(\left[\begin{array}{nghiempt}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{array}\right.\)
Nếu \(a+b+c=0\) thì do \(a,b,c\ne0\),ta có :\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)
Nếu \(a^2+b^2+c^2-ab-bc-ac=0\) thì ta suy ra\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Điều này chỉ xảy ra khi \(a-b=0;b-c=0;a-c=0\Leftrightarrow a=b=c.\)
Khi đó \(P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\).
Vậy \(P=-1\) hoặc \(P=8.\)
CMR: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
#)Giải :
Ta có : (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
= a3 + ab2 + ac2 - a2b - abc - ca2 + a2b + b3 + bc2 - ab2 - b2c - abc + a2c + cb2 + c3 - abc - bc2 - c2a
Loại bỏ các hạng tử đồng dạng, ta được :
= a3 + b3 + c3 - 3abc
=> a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) => đpcm
(a+b+c).(a2+b2+c2-ab-bc-ca)
a) Chứng minh =a3+b3+c3-3abc
b) Nếu cho a+b+c
Chứng minh a3+b3+c3=3abc
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
Cho a, b, c là 3 số dương thỏa mãn ab + bc + ca = 3abc. Chứng minh:
\(\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\le\dfrac{3}{2}\)
\(ab+bc+ca=3abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(\dfrac{1}{a}=x;\dfrac{1}{b}=y;\dfrac{1}{c}=z\)\(\Rightarrow x+y+z=3\)
\(VT=\sum\dfrac{xyz}{yz+x^2}\le\sum\dfrac{xyz}{2x\sqrt{yz}}=\dfrac{1}{2}\sum\sqrt{yz}\le\dfrac{1}{2}\sum x=\dfrac{3}{2}\)
Cho a+b+c=2014.Tính P=\(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
Ta có :
\(a^3+b^3+c^3-3abc\)
\(=a^3+b^3+c^3+3a^2b+3ab^2-3a^2b-3ab^2-3abc\)
\(=\left[\left(a^3+3a^2b+3ab^2+b^3\right)+c^3\right]-\left(3a^2b+3ab^2+3abc\right)\)
\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)
\(=\left\{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\right\}-3ab\left(a+b+c\right)\)
\(=\left[\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Rightarrow P=\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=a+b+c\)
\(=2014\)
Vậy P = 2014